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Titulo: CONVEXIDAD GEODESICA, ESPACIOS SIMETRICOS Y OPERADORES DE
HILBERT-SCHMIDT

RESUMEN: En un conjunto de operadores inversibles y positivos (concretamente en el
grupo de operadores Hilbert-Schmidt con unidad adjunta) se introduce una estructura
Riemanniana natural que convierte este espacio en una variedad simétrica de curvatura
seccional no positiva. Este espacio puede describirse como un cociente mediante la
accién de automorfismos interiores. Hstudiamos las subvariedades Riemannianas geo-
désicamente convexas, que resultan ser caracterizables por una propiedad algebraica de
su tangente; en particular estudiamos el grupo de isometrias de estas subvariedades.
Mostramos como cualquier espacio simétrico del tipo no compacto puede ser isométrica-
mente identificado con una de estas subvariedades mencionadas. Para cualquier subvar-
iedad convexa y cerrada, construimos una proyeccién ortogonal que permite factorizar
cualquier operador de la variedad mediante un factor en la subvariedad y un factor
ortogonal a la misma. Esta factorizacién es tnica (y depende analiticamente de los
parametros). Incluimos una seccién dedicada al estudio de la geometria de las érbitas
unitarias de un operador fijo, donde calculamos las geodésicas de estas érbitas para las

distintas métricas que pueden introducirse.
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Title: GEODESIC CONVEXITY, SYMMETRIC SPACES AND HILBERT-SCHMIDT
OPERATORS

ABSTRACT: A natural Riemannian structure is given to the set of positive invertible
(unitized) Hilbert-Schmidt operators; this metric makes this set a nonpositively curved,
infinite dimensional Hilbert manifold. We give an intrinsic (algebraic) characterization of
such submanifolds, and we study their group of isometries. We show that any symmetric
space of the noncompact type can be isometrically embedded in this manifold. For
any convex, closed submanifold we construct an orthogonal projection by means of the
Riemannian exponential, a projection which provides a unique factorization for any
operator in the manifold; the factors being an operator in the submanifold and the
exponential of an operator orthogonal to the submanifold. We include a final section
devoted to the study of the unitary orbits of a fixed operator and the diverse geometries

that arise from endowing this orbit with different Riemannian metrics.
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INTRODUCCION

Una variedad de Hadamard es una variedad diferenciable, Riemanniana, conexa,
simplemente conexa y de curvatura seccional no positiva. Desde el punto de

vista topolégico, es un objeto extremadamente simple.

Sin embargo, [Eb96] para cualquier variedad M de curvatura no positiva, los
grupos de homotopia (M), k > 2 son nulos, y M puede ser expresada como
un cociente de una variedad de Hadamard (el revestimiento universal de M) por
un grupo de isometrias del revestimiento (el grupo de isometrias en cuestién es

isomorfo a 711 (M)).

La geometria de los espacios de curvatura no positiva es ciertamente rica y
tiene aplicaciones en muchas otras ramas de la matematica, como las funciones
armoénicas ([Cor92], [GS92], [KS93], [MSY93]), las variedades de dimensién 3
y los grupos de Klein ([MS84], [Gab92], [Can93], [CJ94], [Min94|, [McMO96]|,
[Otal96], [Gab97], [Otal98], [Min99], [Kap01], [GMT03]), teoria de rango y rigidez
([Ball85], [BBES5], [BBS85], [BS97], [EH90], [BB95], [Lee97]), topologia de al-



tas dimensiones ([FH81], [FJ93] and [CGM90]), grupos hiperbélicos y geometria
cuasi-conforme ([Gro87], [Pan89], [BM91], [RS94], [Selad5], [Bow98a], [Bow98b],
[BP99], [BP00], [HK98]), teoria de grupos geométrica y combinatoria ([Gro87|,
[DJ91], [Sch95], [CDI5], [BM97], [KL97a], [KLI7b], [Esk98]) y dindmica ([Cro90],
[Otal90], [BCS95], [BFK98)).

Los tratados clasicos [Hel62] de Sigurdur Helgason y [BGS85] de Wallman et al.,
la introduccién a la geometria de los espacios de tipo no compacto de Patrick
Eberlein [Eb96], o el articulo de difusién por el mismo autor [Eb89] contienen
muchos (sino todos) los resultados relevantes concernientes a la geometria de
espacios de curvatura no positiva, como la Ley de Cosenos, proyecciones ortogo-
nales, convexidad de la funcién distancia, la construccién del espacio de frontera

y los teoremas sobre rigidez y rango.

Concentrémonos brevemente en seis resultados que son validos [Hel62] en cualquier

variedad de Hadamard M de dimensién finita:

1. La funcién exponencial Exp, : T,M — M es un difeomorfismo para cada

punto p € M.

2. Para cada par de puntos p,q € M existe una tnica geodésica minimizante

normal (z.e. de velocidad unitaria) que une p con q.

3. Para cualquier triangulo geodésico en M (cuyos lados son las geodésicas de

longitudes a, b y c) se tiene la Ley de Cosenos Hiperbdlica, que dice:

¢? > a?+b%—2abcos(0), donde 0 es el angulo opuesto a ¢

4. La suma de los angulos internos de cualquier tridngulo geodésico es a lo

sumo T7t.

5. Para cualquier par de geodésicas «, [3 en M, la funcién
f(t) = dist(x(t), B(t))

es una funcién real convexa.
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6. Supongamos que C es un conjunto convexo cerrado de M. Entonces para

cada p € M existe un tinico punto I (p) € C tal que
dist (p,TTc(p)) < dist(p, q) para cualquier q € C

En el contexto Riemanniano, el punto Ic(p) se denomina pie de la per-

pendicular de C a p.

Las nociones de completitud como espacio métrico y de completitud en el sentido
geodésico estan intimamente ligadas por el teorema de Hopf-Rinow. Como este
teorema es falso en dimensién infinita [Atkin75] [Atkin97], la compacidad de los
entornos de M parece ser relevante para que los resultados mencionados mas
arriba sean ciertos. Sin embargo, esto no es asi ya que todos estos resultados son
validos en el contexto de los espacios de curvatura no positiva (que son espacios
métricos donde alguna desigualdad de comparacién de tridngulos es valida). En
particular, la prueba de la existencia de un tnico punto que realice la distancia a
un conjunto convexo cerrado (sin suponer la compacidad de los entornos) puede

encontrarse en [Jost97].

Nosotros vamos a ir en una direccién distinta, y lo que haremos serd extender
estos resultados a una variedad diferenciable L., que es localmente isomorfa a
un espacio de Hilbert de dimensién infinita (en realidad, a la parte real de una
cierta algebra de Banach 8). La variedad X, es simplemente conexa, completa
en el sentido geodésico (y en el métrico), y tiene curvatura seccional no positiva:
es mas, Lo, = GLT(B) resulta ser un espacio simétrico en el sentido usual (Rie-
manniano) de la palabra. Todas las herramientas de la geometria Riemanniana
estardn a mano y podremos explorar relaciones entre el dlgebra de Banach y la

geometria de la variedad.

Por ejemplo, probaremos que la tinica geodésica minimizante que realiza la dis-
tancia entre un punto y un conjunto convexo y cerrado debe ser ortogonal al
conjunto, obteniendo de esta manera un teorema de factorizacién para operado-

res, con muchas aplicaciones inmediatas.

El primer resultado de la lista serd obvio a partir de la definicién de X, ; para

probar los otros cinco, vamos a tener que revisar y poner en contexto algunos
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resultados de la literatura existente sobre geometria en espacios de operadores.

El espacio L, es simétrico y tiene curvatura no positiva, y es universal en esta
categoria, en el sentido siguiente: cualquier espacio simétrico y de curvatura no
positiva puede identificarse isométricamente con alguna subvariedad cerrada y

convexa de X .

Aunque no vamos a hacer uso de ella en este manuscrito, hacemos notar al lector
que la teoria de clasificacién de L*-algebras (ver [Sch60] [Sch61] por J.R. Schue,
[CGM90] por Mira, Martin and Gonzalez, o [Neh93] por E. Neher) provee un
ambiente més abstracto (més general si se quiere) de trabajo para esta variedad
y sus subvariedades: la parte real de cualquier L*-algebra puede ser naturalmente
identificada con una subvariedad cerrada y convexa de X.

A lo largo de este manuscrito, vamos a usar Exp,, para denotar la exponencial
Riemannian de nuestra variedad en el punto p, y usaremos asimismo exp en vez

de Expq, que es la exponencial usual de operadores.

Comentamos brevemente la organizacién y los resultados més relevantes de este
manuscrito. Los resultados previos estan mencionados como tales y los resultados
nuevos son los indicados a continuacién como Teorema 1, Teorema 2, ... hasta

el Teorema 14:

En la seccién II, introducimos la notacién y los preliminares necesarios para la
construcciéon de una variedad de Hilbert de dimensién infinita que resulta ser
completa, simplemente conexa y tiene curvatura seccional no positiva.

El espacio ambiente para casi todos los calculos es el espacio de Banach con
producto interno dado por la traza #gr ={A+ a}, donde A es un nimero real y a
es un operador autoadjunto Hilbert-Schmidt que acttia en un espacio de Hilbert
separable H. Como conjunto, X, :=exp(#g). Como la exponencial es analitica

es facil ver que X, es abierto en #r (Proposicién 11.3).

La métrica que introducimos en X, (I1.4) es similar a la métrica que hace de las

matrices inversibles y positivas un espacio simétrico:
XY), =(Y¥p~\,p'X)  parapeloyXYey,

donde < x+a,B+b >r,=ap +2tr(b*a). Con esta métrica la variedad L, tiene
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una derivada covariante (I1.5) dada por

1
OxY =X(Y) -3 (xp—1v+vp—1x)

donde X(Y) denota derivacién del campo Y en la direccién de X (derivacién hecha

en el espacio lineal #R); la curvatura seccional (4) estd dada por la férmula

%X V)Z=—1p [ X0 Y] 0 2]

donde [x,y] = xy —yx denota el conmutador usual de operadores en L(H)

En (IV.9) probamos existencia y unicidad de curvas minimizantes:

Teorema 1 Pongamos [|X||, = lp~2Xp~ 2|, ¥ L(a) = fg) oe(t) || g (t) dt. Sz

dist(p,q) =inf{L(x): x C Lo, xessuave, x(0) =p,x(1) =q}

t
entonces la curva ypq(t) :p% (p*%qp*%) p% es el camino mas corto en

Y que une p con q,; es mas,

1

) 1 )
dist(p,q) =L(vpq) = [[In(p2q 1PZ)HZ = ||qu(t)||ypq(t)

Probamos (I11.5) que los campos de Jacobi a lo largo de geodésicas y son convexos
(en el sentido siguiente: t— ||J(t) | (¢) = (](t),](t)>y(t) es una funcién convexa),

y como un corolario (I11.6), obtenemos

Teorema 2 La funcién real t— dist(y(t),5(t)) es convexa para cualquier

par de geodésicas y,0 € L.

Como conocemos la expresién de las geodésicas, conocemos la expresién para la

exponencial Riemanniana Exp,, : Ty — Lo, que esta dada por

1

Exp,, (v) — pZexp (p_%va) p? = peP

Esta funcién es un C*-difeomorfismo (analitico) sobreyectivo para cada p (IV.6),
y lo mismo se aplica para la restricciéon de Exp,, al fibrado tangente de cualquier

subvariedad cerrada y geodésicamente convexa M C X .



También probamos (IV.11) que la suma de los &ngulos internos de cualquier
tridngulo geodésico en ¥, es menor o igual que 7 (que es una condicién de no
positividad para la curvatura seccional); probamos explicitamente que la cur-

vatura seccional es no positiva en la Proposicién I11.3.

Como un corolario de todas estas desigualdades, obtenemos

Teorema 3 La variedad X, con la distancia geodésica es un espacio métrico

completo

En la seccién V, recordamos algunas definiciones y una serie de resultados sobre
conjuntos cerrados y geodésicamente convexos, que son la categoria de subva-
riedades para los cuales el teorema de proyeccién (Teorema 5) se aplica. En

particular, se tiene el siguiente resultado:

Resultado Supongamos que m es un subespacio cerrado del tangente tal
que
(X, [X,Y]] € m siempre que X,Y €m

Entonces M = exp(m) C Lo, con la métrica inducida es una subvariedad

cerrada y geodésicamente convezxa.

Este resultado se debe principalmente a Mostow [Mos55] (aunque Pierre de la
Harpe sugiere que su demostracién se extiende trivialmente a operadores Hilbert-
Schmidt en [Har72]). Es debido a este resultado (que por otra parte caracteriza
todas las subvariedades que pasan por 1 con esta propiedad de convexidad)
que uno estd en condiciones de afirmar que estos conjuntos convexos existen en
abundancia (ver el Corolario V.11).

En particular, cualquier subéalgebra (cerrada) de los operadores Hilbert-Schmidt
da lugar a un ejemplo de subvariedad convexa. Otros ejemplos se obtienen con-
siderando el conjunto de operadores que acttian en un subespacio determinado de
H. En la seccién V.2.1 damos una lista extensa (pero por supuesto no completa)

de conjuntos convexos.

En la seccién V.3 adoptamos el punto de vista de Elie Cartan, y estudiamos
las subvariedades convexas de M como espacios simétricos homogéneos para la

accién de un grupo de operadores inversibles Gaq. Este grupo es el grupo de Lie
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mas pequeflo que contiene a M (dentro del grupo de los operadores inversibles
de la forma A+ a con a Hilbert-Schmidt y A un escalar). El resultado principal
de esta seccién es el Teorema IV de mas abajo (V.29). A lo largo de todo el
manuscrito, usamos GL(8) para denotar el grupo de elementos inversibles de un
algebra de Banach B; asimismo escribimos 7 (8) para denotar el gupor de ele-
mentos unitarios. La notacién Io(M) se utilizara para referirnos a la componente

arcoconexa de la identidad del grupo de isometrias de M.

Teorema 4 St M = exp(m) es convexa y cerrada, y Gpm C GL(#Hc) es el

subgrupo de Lie con dlgebra de Lie gng = m @ [m,m], entonces
(a) P(Gm) =M, con lo cual M es un espacto homogéneo para G .

(b) Para cada g=|g|ugy (su descomposicion polar de Cauchy) en Gpm, se
tiene | g|=+/99* € M C Gm, y ademds ug € KC Gpm donde K es el sub-
grupo de Lie de isotropia K={ge€ Gm : gg* =1} con dlgebra de Lie t=

[m,m]. En particular, Gp tiene una descomposicion polar

GM ~M x K :P(GM) X U(G]\A)

(c) M=P(Gm) ~ Gm/K
(d) M tiene curvatura seccional no positiva.

(e) Para g € Gpm, consideremos 14(r) = grg*. Entonces I:Gpm — [o(M).

1.1

(f) Tomemos p,q € M, y definamos ¢ :p%(p_%qp_f)ip_% € Gm. EBEn-
tonces Iy es una wsometria en Io(M) que mapea p en (, es decir Gm

actua transitivamente e isométricamente en M.

En la seccién VI enunciamos y demostramos el teorema principal sobre existencia

y unicidad de la geodésica minimizante entre un punto y un convexo (VI.9):

Teorema 5 Sea M una subvariedad cerrada y geodésicamente conveza de
Y. Entonces para cada punto p € Ly, existe una unica geodésica normal

Yp que une p con M tal que

Long(y) = dist (p, M)
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Es mds, esta geodésica es ortogonal a M, y s1 TIp : Lo = M es la funcion
que asigna a p el otro extremo de vy, en M, entonces Iy es una funcidn

contractiva para la distancia geodésica.

Como un corolario directo (VI.13), obtenemos una descomposicién polar para
elementos inversibles relativa a una subvariedad convexa dada. Esta descom-
posicién se asemeja fuertemente a la descomposicién de Iwasawa (ver [Hel62])

para grupos de Lie:

Teorema 6 Supongamos que M =exp(m) C Ly, es una subvariedad cerrada
y conveza. Entonces para todo g € GL(#¢) existe una factorizacion unica

de la forma
g=pe’u, dondepec M,vem  ue u(#c) es un operador unitario.
La funcién g— (p,e¥,u) es una biyeccion analitica que da un isomorfismo
GL(#¢) ~ M x exp(m™) x U (#¢)

La seccién VII trata algunas aplicaciones del teorema de factorizacién. Cuando
éste se aplica a la variedad de operadores diagonales (VII.2), se obtiene una
descomposicién de los operadores positivos como un producto de un operador

diagonal positivo y la exponencial de un operador autoadjunto codiagonal:

Teorema 7 Tomemos un operador A (Hilbert-Schmidt y autoadjunto) tal
que 1+ A > 0. Entonces existen: un operador D estrictamente positivo y
diagonal (perturbacion de un maultiplo de la identidad por un operador de
Hilbert-Schmidt) y un operador autoadjunto Hilbert-SchmaidtV (de diagonal

nula) tales que vale la sigutente factorizacion:
1+A=DeVD

Es mds, D y V son los unicos con las propiedades mencionadas que hacen
vdlida esta factorizacion, y la funcion que asigna 1+ A +— (D,V) es analitica

real.
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Una aplicacién directa (VII.4) de este tltimo teorema nos da una demostra-
cién alternativa de una ya conocida factorizacién para matrices (Teorema 3 del
articulo [Mos55] por G.D. Mostow, ver también el Teorema 1 del articulo [CPR91]
por G. Corach, H. Porta y L. Recht)

Resultado Tomemos una matriz positiva e inversible A € M. Entonces
existen Unicas matrices D,V € My, tales que D es diagonal y estrictamente

positiva, V es autoadjunta y tiene diagonal nula, y vale la siguiente formula:
A=DeVD
Las funciones A— D y A — 'V son analiticas reales.

Un corolario particularmente agradable (VII.3) de los Teoremas 6 y 7 es el sigu-
iente. Esta descomposicién es comparable a la descomposicién de Iwasawa para

grupos de Lie de dimensién finita, ver [Hel62]:

Teorema 8 Para todo g € GL(H¢), existe una unica factorizacion
g=de"u,

donde d es un operador diagonal, positivo e itnversible de Hc, w es un
operador autodjunto con diagonal nula de #Hc, y u es un operador unitario
de Hc.

En la seccién VIII discutimos una foliacién de codimensién uno del espacio to-
tal dada por hojas cerradas y totalmente geodésicas. El espacio tangente de
cada hoja es el conjunto de todos los operadores Hilbert-Schmidt autoadjuntos
(conjunto que de aqui en méas abreviaremos HS™). Las hojas también resultan
paralelas en el sentido siguiente: la distancia entre dos hojas es constante y esta
dada por la longitud de cualquier geodésica que sea simultdneamente ortogonal
a ambas (VIIL.4).

Probamos que la curvatura seccional es trivial para 2-planos verticales con res-
pecto a la foliacién (Proposicién VIIL5), y también (VIII1.6) que £, es isométrica

al producto directo de dos subvariedades completas y totalmente geodésicas:
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Y1 =exp(HSM) y A (la subvarieda de escalares positivos). Es decir, hay un
isomorfismo Riemanniano
ZOO ~ Z1 x A

La hoja X contiene a la identidad, y su espacio tangente es el conjunto de opera-
dores Hilbert-Schmidt autoadjuntos, asi que toda vez que sea posible trabajamos

dentro de £ para evitar la manipulacién innecesaria de escalares.

La versién intrinseca del teorema de factorizacién toma una forma més simple

en Y1; basandonos en resultados de la seccién V, se lee:

Teorema 9 Supongamos que m C HSM es un subespacio cerrado tal que
[x,[x,yll Em  para todo x,y Em

Entonces para cualquier a € HS"™ existe una dnica descomposicion de la

forma

donde x e m, y v e HS™ werifica tr(vz) =0 para todo z € m. El operador x es

el dnico minimizante en m de la aplicacion

Yy tr <1n2(ea/ze*yea/z)>

No podemos dejar de senalar que este resultado es un analogo en dimensién

infinita de un teorema de G.D. Mostow para matrices [Mos55|.

En la seccién VIIL.2, construimos una inclusién topolégica del espacio M, de
matrices positivas e inversibles (de n xn) en Z; (esta inclusién también puede
hallarse -aunque con otro formalismo- en [AV03]). La inclusién resulta cerrada
y geodésicamente convexa; en (VIII.10) sélo consideramos elementos p € X1 y

mostramos otra aplicacién del teorema de factorizacién:

Teorema 10 Si identificamos M| con el primer blogque de la representacion
matricial de los operadores Hilbert-Schmidt (en cualquier base ortonormal

prefijada), entonces para todo operador positivo e inversible e® (b es Hilbert-



Schmidt y autoadjunto) existe una dnica factorizacién de la forma
b [N 0 e 0/ Onxn Y
e = exp
0 1 0 1 Y X

En la seccién IX, bosquejamos la demostracién de la inclusién de las variedades
simétricas del tipo no compacto en M (este resultado se debe a Patrick Eberlein,
ver [Eb85]). Hsta inclusién junto con la inclusién isométrica de M}, en X;

(seccién VIII.2) nos da el siguiente resultado:

Teorema 11 Para cualquier variedad simétrica M del tipo no compacto
existe una inclusion de M en L1 que es un difeomorfismo entre M y una
variedad cerrada y geodésicamente conveza de X1. Esta inclusion preserva
el tensor métrico en el siguiente sentido: el pull-back en M del producto
interno de Xq resulta ser un muiltiplo constante y positivo del producto
interno de M, en cada componente irreducible de de Rham. Identificando

M con su tmagen, M factoriza L, via la aplicacion contractiva TTp,.

En la seccién X, para un operador e € X fijo, consideramos la accién del grupo
unitario de L(H) mediante la conjugacién g — ge®g*; también consideramos la
accién (mediante la misma conjugacién) del grupo de operadores unitarios que
son perturbaciones escalares de operadores Hilbert-Schmidt. La érbita para los
dos grupos no es necesariamente el mismo conjunto (Ejemplo X.5). Recordemos
que utilizamos U (B) para denotar el grupo de unitarios del dlgebra de Banach

involutiva 3.

Discutimos condiciones necesarias y suficientes para que la 6rbita () tenga una
estructura analitica de subvariedad (aqui Q) denota la 6rbita para alguno de los
dos grupos mencionados). Una respuesta parcial al problema estd dada por el

Teorema 12 (X.6) y el Teorema 13 (X.3), que afirman:

Teorema 12 Sz la C*-dlgebra generada por a y 1 es de dimension finita, en-
tonces la orbita de € para la accién del grupo de unitarios Hilbert-Schmaidt

admaite una estructura analitica de subvariedad de ¥,.

x1



Teorema 13 La orbita de €* para la accién del grupo de unitarios de L(H)
admaite una estructura analitica de subvariedad de X, st y sélo st la C*-

dlgebra generada por a y por 1 es de dimensién finita.

Los resultados de la seccién X.2 estan vinculados con el estudio de las geodésicas
de Q) para las diferentes métricas Riemannianas que este conjunto admite. En
la seccién X.2.1 miramos la érbita como subespacio del espacio Euclideo de los
operadores Hilbert-Schmidt; mostramos que para cualquier h autoadjunto, la

curva
’Y(t) — eitheae—ith

es una geodésica de () siempre que e —1 es un proyector ortogonal y h es
codiagonal en la representacién asociada a este proyector (X.11).

También demostramos que, para cualquier e, estas curvas son las geodésicas
usuales de X s6lo en el caso trivial, es decir, cuando se reducen a un punto
(esta es la Proposicién X.9); en particular, cuando la érbita es considerada como
subvariedad del espacio Euclideo de los operadores Hilbert-Schmidt, se deduce
que la misma no es geodésica en ninguno de sus puntos (en el caso en que e* —1

es un proyector).

En la seccién X.2.2 consideramos la érbita de un operador e® como subvariedad
Riemanniana QO C X1; el resultado principal es el Teorema XII que enunciamos a
continuacién (X.14). A lo largo de este manuscrito, usaremos [ , | para denotar
el conmutador usual de operadores. Estos resultados son validos para la érbita
por la accién de cualquiera de los dos grupos U (L(H)) o U (#¢), ya que las dos
acciones inducen la misma subvariedad de ¥ cuando e® —1 es un proyector (esto

se demuestra en el Lema X.7):

Teorema 14 Supongamos que €* =1+ A con A un proyector ortogonal, y

Q C Xy es la orbita unitaria de e*. Entonces

1. QO es una subvariedad Riemannian de X

2. T,Q ={ilx,pl:x € HS"} y T,Q ={x € HS™: [x,p] =0}
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3. La accion del grupo unitario es isométrica en (), es decir
dist? (upu*, uqu*) = dist (p, q)
para cualquier operador unitario u € L(H).

4. Para cualquier v=1i[x,p] € T,Q, la ezponencial de la variedad estd dada
por
E‘,pr)2 (v) = eighg*p g tghg

donde p = ge®g* y h es la parte codiagonal de g*xg (en la repre-
sentacion matricial asociada al proyector A, ver la Proposicion X.11).
En particular, la exponencial estd definida en todo el tangente de la

orbita.

5. S1p=ge®g", g =we"W*, y h es un operador codiagonal, autoadjunto

tal que w*ge'h conmuta con e®, entonces la curva

,Y(t) _ eitghg*pe—itghg*

es una geodésica de (Q C Xy, que une p con (.
6. Si tomamos h € HS™, entonces L(y) = 4 Ihl,

7. La exponencial EXpé)' 1T, — Q) es sobreyectiva.

En la dltima seccién concluimos el manuscrito con algunas preguntas pendientes

y comentarios.
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PRECEDENTES

En su tesis doctoral de 1955, "Infinite Dimensional Manifolds and Morse
Theory" [McA65], J. McAlpin establecié los fundamentos de la geometria
Riemanniana en dimensién infinita. Entre otros resultados relevantes, probé
que una variedad de Hilbert de curvatura seccional no positiva tiene una
exponencial Riemanniana que es un isomorfismo entre el tangente y la va-
riedad para cualquier punto p € M. También probé que la exponencial tiene
diferencial expansiva en cualquier punto: este resultado esta intimamente
conectado con la convexidad de los campos de Jacobi y de la distancia geo-
désica, dos hechos que juegan un papel central en las construcciones de este

manuscrito.

La convexidad de la distancia geodésica y los campos de Jacobi en var-
iedades modeladas por algebras de operadores es objeto de estudio en varios
trabajos de G. Corach, H. Porta y L. Recht [CPR92], [CPR94]. La convex-
idad de la distancia en el contexto de operadores acotados positivos puede
pensarse como una reinterpretacién de la clasica desigualdad de Segal para
operadores en L(H): [[e*tVY|| < ||e*/2eYex/?|.

Basandose en la construccién clasica de una estructura Riemanniana para
el conjunto M}, de matrices positivas e inversibles (la primera publicacién
sobre el particular parece ser el articulo [Mos55] de G.D. Mostow), E. An-

druchow y A. Varela muestran en un articulo reciente [AV03] como los ope-
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radores Hilbert-Schmidt con el producto interno dado por la traza proveen
un marco conveniente para la construccién de una variedad Hilbertiana ¥,
que resulta ser una variedad de Hadamard en el sentido clasico (Riema-
nniano). Este manuscrito estd basado en la mencionada construccién. Ver

tambien [Har72] por P. de la Harpe.

El teorema de factorizaciéon de este manuscrito tiene precedentes obvios
en la descomposicién polar de Cauchy para operadores, pero también cabe
mencionar el articulo [CPR91] por Corach et al. (ver también [Mos55]).
En un articulo de H. Porta y L. Recht [PR94| se demuestra un resultado
de descomposicién similar pero en el contexto de C*-algebras y esperanzas

condicionales.

En [Eb85|, Patrick Eberlein muestra como cualquier espacio simétrico M
del tipo no compacto puede ser incluido topolégicamente en P(g) (los ope-
radores positivos inversibles que actiian en el algebra del Lie del grupo de
isometrias de M). Esta inclusién da un conjunto cerrado y geodésicamente
convexo, y resulta una isometria en el siguiente sentido: si g* es el pull-back
de la métrica de P(g), entonces g* es un multiplo constante de la métrica

de M en cada componente irreducible de de Rham de M.

La conexién entre el espectro de un operador, y la existencia de una estruc-
tura homogénea reductiva para la 6rbita del operador en cuestién ha sido
objeto de estudio a través de los anos para diversos autores, incluyendo
Andruchow, Deckard, Fialkow, Raeburn y Stojanoff en [DF79], [AFHS90],
[Rae77], [AS89], [AS91], [Fial79] and [AS94]|. En particular, [DF79] parece

ser el primer estudio sistematico del tema.

La geometria de los espacios homogéneos reductivos que aparecen natu-
ralmente en algebras de Banach ha sido extensamente estudiada, y men-
cionaremos sblo algunos articulos: Corach, Porta y Recht estudian el espa-
cio de idempotentes en ([PR87a], [PR87b], [CPRI93b|, [CPRI0b]), el con-
junto de operadores positivos inversibles es tratado en [CPR92], [CPR93a],

[AV03], vy el espacio de elementos relativamente regulares en [CPR90a].
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Banderas generalizadas (grassmanianas, etc) son también estudiadas por
Andruchow, Duran, Mata-Lorenzo, Recht, Stojanoff, y Wilkins en [ARS92],
[DMRO00], [DMRO04a], [DMR04b], [Wilk90]. Las isometrias parciales se es-
tudian en [ACO04], la esfera de un médulo de Hilbert se trata en [ACS99],
y los pesos en algebras de von Neumann algebras han sido estudiados por
Andruchow y Varela en [AV99].
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To my father,
Angel Rafael Larotonda
1939-2005

Alld al fondo estd la muerte, pero no tenga miedo.
Sujete el reloj con una mano, tome con dos dedos la
llave de la cuerda, remdntela suavemente. Ahora se
abre otro plazo, los drboles despliegan sus hojas, las
barcas corren regatas, el tiempo como un abanico se va
llenando de si mismo y de €l brotan el aire, las brisas
de la tierra, la sombra de una mujer, el perfume del
pan.

;Qué mds quiere, qué mds quiere? Atelo pronto a
su munieca, déjelo latir en libertad, imitelo anhelante.
El miedo herrumbra las dncoras, cada cosa que pudo
alcanzarse y fue olvidada va corroyendo las venas del
reloj, gangrenando la fria sangre de sus rubies. Y alld
en el fondo estd la muerte st no corremos y llegamos
antes y comprendemos que ya no tmporta.

Julio Cortdzar, "Instrucciones para dar cuerda al

relog"






I INTRODUCTION

I.1 Hadamard manifolds

A Hadamard manifold is a Riemannian manifold which is simply connected, com-
plete, and has nonpositive sectional curvature. From the topological viewpoint,
it is a very simple object.

However, (see [Eb96]) for any manifold M of nonpositive sectional curvature,
the higher homotopy groups (7 (M), k > 2) vanish, and M can be expressed as
a quotient space of a Hadamard manifold (the universal covering of M) and a

suitable deckgroup of isometries of the covering which is isomorphic to 7ty (M).

The geometry of nonpositevely curved spaces is indeed rich and has applica-
tions in many other branches of mathematics, such as harmonic maps ([Cor92],
[GS92], [KS93], [MSY93]), 3-manifolds and Kleinian groups ([MS84], [Gab92],
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[Can93], [CJ94], [Min94], [McM96], [Otal96], [Gab97], [Otal9g], [Min99], [Kap01],
[GMT03]), structure theory and rigidity ([Ball85], [BBE85], [BBS85], [BS97],
[EHO90], [BB95], [Lee97]), high dimensional topology ([FH81], [FJ93], [CGM90]),
hyperbolic groups and quasi conformal geometry ([Gro87], [Pan89], [BM91],
[RS94], [Sela95], [Bow98a], [Bow98b], [BP99], [BP00]| and [HK98]), geometric and
combinatorial group theory ([Gro87], [DJ91], [Sch95], [CD95], [BM97], [KL97a],
[KLO7b| and [Esk98]) and dynamics ([Cro90], [Otal90], [BCS95], [BFKI8]).

The classical treatises [Hel62] by Sigurdur Helgason and [BGS85] by Wallman
et al., the introduction to the geometry of spaces of the noncompact type by
Patrick Eberlein [Eb96], or the expository survey by the same author [Eb89]
collect many of the relevant facts concerning the geometry of these objects, such
as the Law of Cosines, orthogonal projections, convexity of the distance function,

the construction of the boundary space, and rank rigidity theorems.

Let’s focus briefly on six basic results which are valid (see [Hel62]) in any
Hadamard manifold M of finite dimension:
1. The exponential map Exp,, : T[,M — M is a diffeomorphism for each p € M.

2. For each pair p,q € M there exists a unique normal (z.e. unit speed),

minimizing geodesic from p to q.

3. For any geodesic triangle in M whose sides are geodesics of length a, b and

c, we have the Hyperbolic Law of Cosines, which states:

¢? > a?+b%—2ab cos(0), where 0 is the angle opposite to ¢

4. The sum of the interior angles of any such triangle is at most 7.
5. For any pair of geodesics «, 3 in M, the function

f(t) =dist(a(t), B(t))

is a real convex function.

6. Let C be a convex closed subset of M. Then for each p € M there exists a
unique point IM¢(p) € C such that

dist (p,TTc(p)) < dist(p,q) for any q €C




I.1. Hadamard manifolds

In the Riemannian context, the point TTc(p) is called the foot of the per-

pendicular from p to C.

The notions of completeness as metric space and completeness in the geodesic
sense are intimately related by Hopf-Rinow’s theorem. Since this theorem is false
in infinite dimensions (see [Atkin75], [Atkin97]), compactness of neighbourhoods
of M seems to be relevant for these results to hold true. However, statements
1 through 6 are known to be valid in the setting of nonpositively curved spaces
(which are metric spaces where some geodesic triangle comparison inequality is
valid). In particular, the proof of existence of a unique distance-realizing point for
any closed convex set (without assuming local compactness of neighbourhoods)
can be found in [Jost97].

We will go in an alternate direction, in order to extend these results to a manifold
Y which is locally isomorphic to an infinite dimensional Hilbert space (in fact,
the real part of a Banach algebra 8). The manifold ¥, is simply connected,
complete, and has nonpositive sectional curvature; moreover, X, = GL"(8) is a
symmetric space in the usual Riemannian sense. All the tools of the Riemannian
geometry will be at hand, and we will be able to explore relationships between

the Banach algebra and the geometry of the manifold.

For instance, we will prove that the unique minimizing geodesic that realices
distance between a point and a convex set must be orthogonal to that set, ob-
taining in this way a decomposition theorem for operators, with many immediate

applications.

The first result of the list will be apparent from the definition of ¥ .,; to prove
the second, the third, the fourth and the fifth we will have to collect some facts

from the existing literature of geometry on spaces of operators.

The space X, is symmetric and nonpositively curved, and universal in this
category in the sense that every symmetric space of the noncompact type can be

(almost) isometrically embedded as a geodesically convex, closed submanifold.

Though we will not need it along this manuscript, it should be noted that the
general classification theory of L*-algebras (see [Sch60] and [Sch61] by J.R.Schue,
[CGMO90] by Mira, Martin and Gonzalez, or [Neh93] by E. Neher) provides a gen-
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eral abstract framework for this manifold and its convex submanifods: the real
part of any [*-algebra can be naturally embedded as a convex closed submanifold

of L.

1.2 The main results

A few words about notation: we will use greek characters «, 3,9, ... to denote real
and complex numbers, and capital characters ¥, A|A Q,... to denote manifolds.
The first characters of the alphabet a,b,c,d,--- will be reserved for Hilbert-
Schmidt operators and as usual, p,q,r,s,... will be used for points (in X.);
sometimes we will use capital letters A,B,C,D,... to stress the fact that this
points are positive invertible operators in the unitized Banach algebra of Hilbert-
Schmidt operators. The capital letters X,Y,Z,W,... will be used sometimes to
denote selfadjoint operators (tangent vectors) in the mentioned Banach algebra.
German characters a,€,m,p,... will be used as customary in Lie group theory to
denote Lie algebras (or to denote certain subspaces of Lie algebras). Throughout,
Exp,, will denote the exponential of the Riemannian manifold at the point p,

and we will use exp instead of Expq, which is the usual exponential of operators.

Now we outline the organization and main results of this work (previous results
are mentioned as such, and new results are Theorem 1, Theorem 2, ... trough
Theorem 14):

In section II, we introduce some notation and recall a few results we will need
for the construction of a Hilbert manifold of infinite dimension ¥.,, which is
complete, simply connected and has nonpositive sectional curvature.

The ambient space for most of the computations is the Banach space with trace
inner product #r ={A\+ a}, where A is a real number and a is a selfadjoint Hilbert-
Schmidt operator acting on a separable Hilbert space H. As a set, L, :=exp(#R).

The exponential is an open mapping so Ly, is open in #y (Proposition I1.3).

The metric we introduce (I1.4) resembles the metric of the positive invertible

matrices when they are regarded as symmetric space:

(X,Y) = <Yp*‘ ,]:r‘><>2 for p € Lo, and X,Y € %5,
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where < a4 a,p +b >,= «f + tr(b*a). With this metric the manifold X, has

covariant derivative (I1.5) given by

1
OxY =X(Y) -5 (xp”YJrYp*]x)

where X(Y) denotes derivation of the vector field Y in the direction of X (per-

formed in the ambient space #); the sectional curvature (4) is given by

1
Rp(X,Y)Z=—7 D Hv‘1X,p_1Y] p! Z]
where [x,y] = xy —yx denotes the standard commutator of operators in L(H)

In Theorem I (IV.9) we prove that the unique geodesic for the connection in-
troduced is given by an explicit formula which involves only the starting and

endpoints of the curve:
_1 1 1
Theorem 1 Set || X||p, =|p~2Xp~ 2|2, and L(«) = [, |(t)||&(¢) dt. If

dist(p,q) =inf{l(x): ¢ C Lo, & 28 smooth , x(0) =p,x(1) = q}

1 1

t
then the curve ypq(t) :p% (pff qp*f> p% 1s the shortest path joining p to

g in Lo, moreover,

. 1 1 .
dist(p,q) = L(vpq) = [In(pZqa 'p2)|l2 = [vpa(t)lly,, 0

We prove (I11.5) that Jacobi fields along geodesics y are convex (in the sense
that the real map t — ||J(t)||y (1) = <](t),](t)>y(t) is convex), and as a corollary
(111.6), we get

Theorem 2 The real map t+— dist(y(t),d(t)) s convezx for any pair of geo-
desics v,0 € L.

Since we know the formula for the geodesics, we also know that the Riemannian
exponential Exp,, : T, Xo — Lo 1s given by

1 _1 1 1 —1
Epr(V)zpzeXp(p Zvp 2>p2=pep

A%
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This map is a C% diffeomorphism onto L, for each p (IV.6), and the same is
true for the restriction of Exp,, to the tangent bundle of any geodesically convex,

closed submanifold M of ¥.

A corollary for all these inequalities is
Theorem 3 The manifold ¥, with the geodesic distance 1s a complete met-

ric space

We also prove (IV.11) that the sum of the inner angles of any geodesic triangle in
2 1s less or equal than 7t, which is nonpositive constrain on sectional curvature;

we prove explicitly that sectional curvature is nonpositive in Proposition 11I.3.

In section V, we recall some definitions and facts about closed, geodesically con-
vex subsets, which are the submanifolds where the projection theorem (Theorem

5) applies. In particular, we have the following result

Result Assume m 1s a closed subspace such that [X,[X,Y]] € m whenever
X, Yem. Then M =exp(m) C Lo, with the induced metric i1s a closed, geo-

desically convexr submanifold.

This result is mainly due to Mostow [Mos55] (though Pierre de la Harpe sketches
the proof for Hilbert-Schmidt operators in [Har72]), and it shows that there are
plenty of this sets (see Corollary V.11).

In particular, any closed abelian subalgebra of Hilbert-Schmidt operators pro-
vides an example of a convex submanifold. Other examples are provided by
operators acting on fixed subspaces of H. In section V.2.1 we give a list of

convex sets; this list is exhaustive but by no means complete.

In section V.3 we take Elie Cartan’s viewpoint, and study convex submanifolds
M as homogeneous symmetric spaces for the action of a convenient group Gn.
This group is the smaller Lie group -inside the invertible operators of the Banach
algebra- containing M. The main result is Theorem IV below (V.29). Through-
out, GL(B) stands for the group of invertible elements in the Banach algebra 3
and Iy(M) for the connected component of the identity of the group of isometries

of M :
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Theorem 4 If M =exp(m) s conver and closed, and Gy C GL(#H¢) s the

Lie subgroup with Lie algebra gng = m@ [m,m], then
(a) P(Gm) =M, so M 1s a homogeneous space for Gy .

b) For an =| g|ug (Cauchy polar decomposition) in G we have
( y9=lglug yp p M,
lgl=+v99* € M C Gm, and also ug € KC Gy where K is the isotropy

Lie subgroup K={g € Gzm : gg* =1} with Lie algebra ¢ =[m,m]. In par-

ticular, Gp has a polar decomposition

GMZMXK:P(GM)XUGM

(c) M=P(Gm) ~ Gm/K.
(d) M has nonpositive sectional curvature.

(e) For g € Gm, consider I4(r) =grg*. Then I:Gm — [p(M).

1

(f) Take p,q € M, and set g :p%(p_%qp_%) P Ie Gm. Then Iy s an
isometry n Io(M) which sends p to q, namely Gy acts transitively

and 1sometrically on M.

In section VI we state and prove the main result about uniqueness and existence

of the minimizing geodesic (VI.9):

Theorem 5 Let M be a geodesically convezx, closed submanaifold of X.
Then for every point p € Lo, there is a unique normal geodesic 'y, joining
p to M such that L(y,) =dist (p,M).

This geodesic 1s orthogonal to M, and 1f TTpm 1 Xoo = M 1s the map that
assigns to p the end-point of yp, then Iz 1s a contraction for the geodesic

distance.

As a corollary (VI.13), we obtain a polar descomposition relative to any fixed
convex submanifold. This decomposition resembles the Iwasawa decomposition

of (finite dimensional) Lie groups, see [Hel62]:




I INTRODUCTION

Theorem 6 Assume M =exp(m) C Ly ts a closed, convez submanifold.

Then for any g € GL(#H¢) there exists a unique factorization of the form
g=pe’u, where pc M,vemt ue u(#c) is a unitary operator.
The map g+— (p,eY,u) s an analytic biyjection which gives an isomorphism
GL(#¢) ~ M x exp(m™) x U (#¢)

Section VII deals with a main application of the factorization theorem. When
applied to the manifold of diagonal operators (VII.2), provides a decomposi-
tion of positive operators as a product of a diagonal positive operator and the
exponential of a codiagonal, selfadjoint operator:

Theorem 7 Take any selfadjoint Hilbert-Schmadt operator A such that
14+ A >0. Then there exist a diagonal, strictly positive Hilbert-Schmadt
perturbation of the identity D and a selfadjoint Hilbert-Schmaidt operator V

with null diagonal such that the following factorization holds:
1+A=De"D

Moreover, D and V are unique and the map 14+ A +— (D,V) s real analytic.

A straightforward application (VII.4) of the last theorem is an alternative proof
to an already known decomposition for matrices (Theorem 3 of the paper [Mos55]
by G.D. Mostow, see also Theorem 1 of the paper [CPR91] by Corach, Porta and
Recht)

Result Fiz a positive invertible matriz A € M;[. Then there ezist unique
matrices D,V € My, such that D 1s diagonal and strictly positive, V 1s

symmetric and with null diagonal, and the following formula holds
A=DeVD
Moreover, the maps A+— D and A +— V are real analytic.

A nice corollary (VII.3) of Theorems 6 and 7 is the following; this decomposition

is close to the Iwasawa decomposition [Hel62] of (finite dimensional) Lie groups:
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Theorem 8 For any g € GL(#¢), there 1s a unique factorization
g=de"u,

where d 1s a positive invertible diagonal operator of Hc, w 1s a selfadjoint

operator with null diagonal in #Hc and u 1s a unitary operator of Hc.

In section VIII, we discuss a foliation of codimension one of the total space by
totally geodesic, closed leaves. The tangent space of each leaf is the Banach
space of selfadjoint Hilbert-Schmidt operators (shortly, HSh). The leaves are
also parallel in the sense that geodesics that have minimal length among those

which join them are orhogonal to both of them (Proposition VIII.4).

We prove that sectional curvature is trivial along vertical 2-planes (Proposition
VIILE), and also (VIII.6) that L is isometric to the direct product of the
complete and totally geodesic submanifolds ¥ = exp(HS") and A (the positive
scalars), t.e.

oL XA

The leaf X1 contains the identity and its tangent space is the set of selfadjoint
Hilbert-Schmidt operators, so whenever it is possible, we work inside X1 to avoid

the manipulation of scalars.

The intrinsic version of the decomposition theorem takes a simpler form; based

upon the results of section V, it reads:

Theorem 9 Assume m C HS" is a closed subspace such that
[x,[x,yll€em  for any x,y€m

Then for any a € HS™ there is a unique decomposition of the form

where x cm, and v e HS" is such that tr(vz) =0 for any z€m. The operator

x 15 the unique minimazer in m of the map

y = tr (1n2(ea/ze*yea/2)>




I INTRODUCTION

This is an infinite dimensional analogue of a theorem of G.D. Mostow for matrices
[Mos55].

In section VIII.2, we embed the space M| of positive invertible n x n matrices
in ¥y (this embedding can also be found in [AV03]). This embedding is closed
and geodesically convex; in (VII1.10) we only consider elements p € £; and show

another application of the main theorem:

Theorem 10 If we identify M, with the first block of the matriz representa-
tion of the Hilbert-Schmaudt operators (in any fized orthornomal basts), for
any positive invertible operator e® (b is Hilbert-Schmidt and selfadjoint)

there 1s a unique factorization of the form
b er 0 ™ 0 Onsn Y*
e = exp
0 1 0 1 Y X

In section IX, we sketch the proof of the inclusion of symmetric manifolds of
the noncompact type in Ml (this result is due to P. Eberlein, see [Eb85]). This
result together with the embedding of M in X; (see section VIIL.2) gives us

Theorem 11 For any symmetric manifold M of the noncompact type there
1s an embedding into X1 which 1s a diffeomorphism betwen M and a closed,
geodesically convex submanafold of £1. This map preserves the metric ten-
sor in the following sense: if we pull back the inner product of £1 to M,
then this inner product is a (positive) constant multiple of the inner product
of M (on each irreducible de Rham factor of M). Assuming we identify M

with its 1image, M factorizes X, via the contractive map TTp,.

In section X, for fixed e® € £, we consider the action of the full unitary group of
L(H) by means of the conjugation g+— ge®g*, and also the action of the unitaries
that are Hilbert-Schmidt perturbations of a scalar multiple of the identity. The
orbit acting with either group is not necessarily the same set (Example X.5).
Throughout, ¢ () stands for the unitary group of the involutive Banach algebra
B.

10



1.2. The main results

We discuss whether the orbit () can be given an analytic structure of subman-
ifold; this question is partially answered by Theorem 12 (X.6) and Theorem 13
(X.3), which state:

Theorem 12 If the C*-algebra generated by a and 1 s finite dimensional,
then the orbit of e* with the action of the Hilbert-Schmaidt unitaries can be

gwen an analytic submanaifold structure.

Theorem 13 The orbit of e* under the action of the full unitary group
of L(H) can be gwen an analytic submanifold structure if and only if the

C*-algebra generated by a and 1 1s finite dimensional.

The results of section X.2 are related to the study of the geodesics of the orbit
Q, with different Riemannian metrics. In section X.2.1 we immerse the orbit
in the Euclidean space of Hilbert-Schmidt operators and we give it the induced

metric: we show that for any selfadjoint h, the curve
,Y(t) — eitheae—ith

is a geodesic of the orbit whenever e® —1 is an orthogonal projector and h is

codiagonal in the representation associated to e® —1. This is Proposition X.11.

We also show that, for any e®, these curves are the usual geodesics of X1 only
if they are constant curves (this is Proposition X.9); in particular, when the
orbit is regarded as a submanifold of the Euclidean space of Hilbert-Schmidt
operators, this submanifold is not geodesic in any of its points whenever e® —1

is an orthogonal projector.

In section X.2.2 we take a peak at the geodesics of the orbit of e as a Riemannian
submanifold Q C X; the main result is Theorem XII below (X.14). Throughout
[ , ] stands for the usual commutator of operators, and these results are valid
for the action of any of the groups ¢ (L(H)) or U (#c) because they induce the

same manifold in ¥ (this is proved in Lemma X.7):

Theorem 14 Assume e® =1+ A with A an orthogonal projector, and O C X4

18 the unitary orbit of e*. Then

1. O 1s a Riemannian submanafold of Xq.

11
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NTRODUCTION

o

. ToQ ={ilx,p] : x € HS"} and T, Q! ={x € HS™: [x,p] = 0}.
The action of the unitary group ts isometric, namely
dist? (upu*,uqu*) = dist (p, q)
for any unitary operator uc L(H).
For any v =i[x,pl € T,Q, the exponential map is given by
Exp]gl (v) = eighg*p e tohg’

where p = ge®g* and h is the codiagonal part of g*xg (in the matriz
representation of Proposition X.11). In particular, the exponential

map s defined in the whole tangent space.

If p=ge“g*, q =we*w*, and h 1s a selfadjoint, codiagonal operator

such that w*ge'™ commutes with e®, then the curve
v(t) = eitoho’ pe—itaho’

1s a geodesic of ) C L1, which joins p to q.

If we assume that h € HS", then L(y) = 4 Ihl,

The exponential map E}ngl : T QO — QO 15 surjective.

In the last section we end the exposition with some open questions and remarks.

12



1.3. Precedents

I.3

PRECEDENTS

In his 1955 PhD. Thesis "Infinite Dimensional Manifolds and Morse The-
ory" [McA65], J. McAlpin set the foundations of the Riemannian geometry
in infinite dimensions. Among other relevant results, he proved that a non-
positively curved Hilbert manifold M has a Riemannian exponential which
is an isomorphism for each p € M, and that this exponential has an ex-
pansive differential at any point. This result is deeply connected with the
convexity of the Jacobi fields and the geodesic distance, two facts that lay

deeply in the core of this manuscript.

Convexity of Jacobi fields and the geodesic distance (in manifolds mod-
eled on L(H)) was studied by G. Corach, H. Porta and L. Recht [CPR92],
[CPRY4]. In this context of positive invertible operators of L(H), convexity
can be thought of as a reinterpretation of Segal’s classical inequality for
operators: [eXTV|| < |[e*/%eYeX/?|.

Based upon the classical construction of a Riemannian structure on the
set M| of positive invertible n x n matrices, (the first publication on the
subject seems to be the paper [Mos55] by G.D. Mostow), E. Andruchow
and A. Varela show in a recent paper [AV03] how the Hilbert-Schmidt
operators HS with inner product given by the trace provide a convenient
framework for the construction of a Hilbert manifold ¥, modeled on the
real Hilbert space HS™, that turns out to be a Hadamard manifold in the
classical (Riemannian) sense of the term. This manuscript is based upon

the mentioned construction. See also [Har72] by P. de la Harpe.

The decomposition theorems have obvious precedents in the polar decompo-
sition of operators, but we should also mention the splitting of the positive
set of a matrix algebra (see [Mos55] by Mostow, [CPR91] by Corach et al.)
and the paper by Porta and Recht [PR94] which deals with C*-algebras and

conditional expectations.

13
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INTRODUCTION

In [Eb85], Patrick Eberlein shows that any symmetric manifold M of the
noncompact type can be embedded in P(g) (the positive invertible opera-
tors acting in the Lie algebra of the group of isometries of M) as a closed,
geodesically convex submanifold. This embedding is isometric in the fol-
lowing sense: if g* is the pull back of the metric of P(g) on M, then g* is

a constant multiple of the metric of M on each irreducible de Rham factor
of M.

The relationship between the spectrum of an operator, and the existence
of a homogeneous reductive structure for the orbit of that operator has
been systematically studied through the years by diverse authors, including
Andruchow, Deckard, Fialkow, Raeburn and Stojanoff in [DF79], [AFHS90],
[Rae77], [AS89], [ASO1], [Fial79] and [AS94]. In particular, [DF79] seems
to be the first systematic approach to the subject.

The geometry of the homogeneous reductive spaces which appear naturally
in Banach and C*-algebras has been extensively studied, and we should
mention a few articles: Corach, Porta and Recht study the space of idempo-
tents in ([PR87a], [PR87b], [CPR93b], [CPRI0b]), the set of positive invert-
ible operators is treated in the papers [CPR92], [CPR93a] and [AV03], and
the space of relatively regular elements in a Banach Algebra in [CPR90a].
Generalized flags (grassmanians, spectral measures, etc) are also studied
by Andruchow, Duran, Mata-Lorenzo, Recht, Stojanoff, and Wilkins in
[ARS92], [DMRO00], [DMRO04a], [DMRO04b] and [Wilk90]. Partial isome-
tries are studied in [ACO04], the sphere of a Hilbert module is treated in
[ACS99], and weights on von Neumann algebras are studied by Andruchow
and Varela in [AV99].

14



1M1 THE MAIN OBJECTS INVOLVED

The framework of this manuscript is the von Neumann algebra L(H) of bounded

operators acting on a complex, separable Hilbert space H.

I1.1 Hilbert-Schmidt operators

Throughout, HS stands for the bilateral ideal of Hilbert-Schmidt operators of
L(H): this is the ideal of compact operators with singular values lying in {;.

Recall that HS is a Banach algebra without unit when given the norm

1
2

lallz=2tr(a*a)T =2 " (e, ae;)

i>1

15



II THE MAIN OBJECTS INVOLVED

where {e;}icy 18 any given orthonormal basis of H. The reader can find many of

the statements we will use about trace operators and trace ideals in [Simon89].

In L(H) we consider some Fredholm operators:
He ={a+A: ae€HS, AeC},

the complex linear subalgebra consisting of Hilbert-Schmidt perturbations of
scalar multiples of the identity. This algebra is not norm closed, in fact, its
closure in the uniform norm of L(H) is the set of compact perturbations of scalar

multiples of the identity.

There is a natural Hilbert space structure for this subspace, where scalar oper-
ators are orthogonal to Hilbert-Schmidt operators, which is given by the inner
product

(a+A,b+p), =4tr(ab”) +Ap

The algebra #c is complete with this norm, for the Hilbert-Schmidt operators

are complete with the trace inner product.
Remark I1.1. Another natural (but not quadratic) norm is given by the formula
la+Al7 =2tr(a*a)2+|A]
With this norm #¢ becomes a Banach algebra, that is
[(a+A)(b+ B[ < [lat+All1[lo+B]
However, we will use the norm defined by the inner product, that is

1
la+Al, = y/llall3 + A2 = (4tr(a’a)+AP)’

Both norms are equivalent, but || - ||, provides an Euclidean structure for #c.

We also use the term Banach algebra for a normed algebra 8 where the sum
and product are continuous operations; this is slightly different from the usual
definition (see Rickart [Rick60] or Guichardet [Guich67]).

16



I1.2. Some basic geometrical facts

The model space that we are interested in is the real part of #¢:
Hr ={a+A: a*=a, ae€ HS, A € R},
which inherits the structure of real Banach space, and with the same inner

product, becomes a real Hilbert space.

Remark I1.2. For this inner product, we have (by cyclicity of the trace)
(XY, Y*X*), = (YX,X*Y") for any X,Y € #, and also

(ZX,YZ), = (XZ,ZY), for X,Y € #c and Z € #z

We will use HS™ to denote the closed subspace of selfadjoint Hilbert-Schmidt

operators. In #R, consider the subset
Yo ={A>0,A € #R}

This is the set of invertible operators a+ A such that o(a+A) C (0,+00), with

a selfadjoint and Hilbert-Schmidt, A € R.
Note that, since a is compact, then 0 € o(a), which forces A > 0 because

ola+A)C (0,+00) & o(a) C (—A,+o0)

Our main reference for standard facts about functional analysis, operator alge-

bras and functional calculus is the four volume treatise of Functional Analysis
by Michael Reed and Barry Simon, [RS79].

I1.2 Some basic geometrical facts

The following result is elementary, but we will give a proof anyway to get a taste
of the nature of the objects involved, see also Corollary V.12:

Proposition 11.3. L, is an open set of Hp.

Proof. Consider the analytic exponential map exp: #Hc — Hc that assigns

A el = A—n
n!

17



II THE MAIN OBJECTS INVOLVED

The restriction of exp to #p is well defined because for every Hilbert-Schmidt,

selfadjoint operator and every real A we can write et =b+ 3, where

b— AZa_k d A
=e w an p=e

Obviously, 3 is real and b is selfadjoint; moreover b lies in HS because the latter

is a bilateral ideal in L(H), and b = a-c for a bounded operator c.

We claim that X, = exp(#Rr). One inclusion has already been proved. To prove
the other, apply the functional calculus to the function g(x) =1ln(x) and the
operator b+ 3 € L. Since this operator is positive, the logarithm has the form
of a series; an argument similar to the one we used for the exponential shows
that In(3+b) =A+a, with A real and a Hilbert-Schmidt (and selfadjoint). This

proves that the logarithm gives a local analytic inverse of exp, so exp maps onto.

The proof of our initial assertion follows from general results about Banach
algebras and analytic maps: any analytic map (from a Banach algebra into
itself) with an analytic local inverse is locally open, and as a consequence, X, =

exp(Hgr) C Hg is open. O

Remark II.4. For p € L, we identify T, with #R, and endow this manifold

with a (real) Riemannian metric by means of the formula
= <Xp” ,p*‘Y>

where (x+ a,B +b), = af +4tr(b*a). Throughout, HX||§ = (X,X)_, which can

be rewritten as

x,Y), = {p" "X Yp~")

2 2

IXI7 == 2Xp 2, = (Xp~ " p7'X) = (p7'XXp7") |

2

and is the norm of tangent vectors X € T2 .

Lemma I1.5. Covariant derivative in Ly, (for the metric introduced in Re-

mark I1.4) is given by the expression

1

(OxY)y =Xl =5 (Xpp ™" Yo +Ypp ' Xy ) (1)

18



I1.2. Some basic geometrical facts

where X(Y) denotes derivation of the vector field Y in the direction of X
(performed in the linear space Hy ).

Proof. Note that [ is clearly symmetric and verifies all the formal identities
of a connection; the proof that this is the Levi-Civita connection relays on the

compatibility condition between the connection and the metric,

d
a X,Y), = <D?X>Y>y +(X, D7Y>v

where 7y is a smooth curve in X, and X,Y are tangent vector fields along y. This
identity is straightforward from the definitions for both terms and the cyclicity
of the trace. O

Euler’s equation [y = 0 reads
.. T
Y —vv v=0, (2)
and
11 I\t 1
qu(t)=r>2(v 2qp 2) p2 (3)
is the unique solution of FEuler’s equation with y(0) =p and y(1) =q.

These curves look formally equal to the geodesics between positive definite ma-
trices (regarded as a symmetric space), and we will prove (Theorem IV.9 ) that
the unique minimizing geodesic (i.e. the shortest path) joining p to q is given

by the curve above.

Lemma I1.6. The metric in X s tnvariant under the action of the group of
wnvertible elements: if g is an invertible operator in Hc, then Ig(p) = gpg*

18 an tsometry of L.

Proof. Note that d,I4(X) = gXg* for any X € T, L, so

19Xg™13rg: = <9X9*(9*)_1T_1 g (g") g 9X9*> =

2

=<9Xr"9’1,(9*)’1r’1X9*> =<XT’],Y*1X> = |IX||?
2

2
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II THE MAIN OBJECTS INVOLVED

where the third equality in the above equation follows from Remark I1.2 (naming

X=gXr 1, Y=g O

20



1M1 LOCAL STRUCTURE

I11.1 The curvature tensor

Proposition III.1. The manifold X, has a curvature tensor given by the

following commutant of operators:

Kp(X,Y)Zz—%p HD”X,D”Y] ,p*‘Z] (4)

Proof. This follows from the definition ® (X,Y) = UxOy — OyOx —Opx vy (here
O stands for the covariant derivative) together with the formula for 0 given in

Lemma 1. OJ

Definition II1.2. A Riemannian submanifold M C L, s flat at p € M if sec-

tional curvature vanishes for any 2-subspace of T,M. M 1s a flat manifold

21



IIT LOCAL STRUCTURE

if 1t 1s flat at any p € M.

A Riemannian submanifold M C Lo, (with the induced metric) is geodesic
at p € M 1f geodesics of the ambient space starting at p which have wnitial
velocity in T,M, are also geodesics of M. M 1s a totally geodesic manifold
if 1t 1s geodesic at any p € M. Equwalently, any geodesic of M 1s also a

geodesic of the ambient space L.

Obviously, in this context curvature and commutativity are related; the following

proposition makes this relation explicit:

Proposition I11.3. Assume M C L, ts a submanaifold. Assume further that
M s flat and geodesic at p € M. Then, if X,Y € Ty M, p_%X‘p_% commutes
with p*%Y‘p*%

Proof. Since M is geodesic at p, the curvature tensor is the restriction of the cur-
vature tensor of X . Set X :p_%Xp_%, Y :p_%Yp_%. Then a straightforward

computation shows that

1

<Rp(X,Y)Y,X)p:—Z{<XY2,X> —2(YXY,X>2+<Y2X,X> }

Now X,Y € #g, so X=A+a, Y= +Db, and the equation reduces to

(R (X, Y)Y, X),, = —%

{tr(a?p?) ~tr((ab))} (5)
The Cauchy-Schwarz inequality for the trace tells us that curvature at p € X
is always nonpositive, and it is zero if and only if a and b commute. Hence
whenever M is flat, X and Y commute for any pair of tangent vectors X,Y € T,M

as stated. O]

Corollary I11.4. Sectional curvature of X, 1s everywhere nonpositive.
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I11.2.  Convexity of the Jacobi fields

I11.2 Convexity of the Jacobi fields

Let J(t) be a Jacobi field along a geodesic y of X,. That is, | is a solution of
the differential equation

D?] "

22 TR Y)y =0 (6)
Next we show that the norm of a Jacobi field is convex. If X,Y € #p are regarded
as tangent vectors of X, at the point p, then the following condition (which is a
non positive sectional curvature condition) holds (see Proposition II1.3 above):

(%5 (X,Y)Y,X), < 0. Then

1 d? _/D?J D] DJ\
§@<],]>y—<ﬁ,]>y+<a,a>y—

_ " DJ D]
- <RY(I)Y)Y)]>Y+<dt)dt>y20

In other words, the smooth function t — (J,]), is convex.

But more can be said: the norm of the Jacobi field (and not of the square of

the norm just noted) is a convex function.

Proposition IT1.5. Let v be a geodesic of Lo, and | a Jacob: field along vy.
1

The map t— ||J|l, = (J,])5 is convex.

Proof. Clearly, is suffices to prove this assertion for a field ] which does not
vanish. By the invariance of the connection and the metric under the action of
the group of invertible operators, it suffices to consider the case of a geodesic
v(t) = e'X starting at 1 € Lo (X € #R). For the field K(t) = e tX/2](t)etX/2

the Jacobi equation translates into
4K (1) = K(1)X? + XK (t) —2XK (1) X. (7)

We may assume (since scalars are orthogonal to Hilbert-Schmidt operators) that
J C HS™. In this case, (J,]))/* =tr(y 'y ')/ 2 = tr(K) /2 = K| 2

Let us prove therefore that the map t — f(t) = ||K(t)||2 is convex, for any (non
vanishing) solution K of (7). Note that f(t) is smooth, and f =tr(K2)~1/2¢r(KK).

23



IIT LOCAL STRUCTURE

Then

f = —tr(K?)73/24r(KK)? + tr(K2) "/ 2{tr(K?) + tr(KK)).
We multiply this expresion by tr(K2)3/2 to obtain
tr(K2)3/2(t) = —tr(KK)? + tr(K?)tr(K?) 4 tr(K?)tr(KK). (8)
The first two terms add up to a non negative number. Indeed,
tr(KK)? < tr(K?)tr(K?)

by the Cauchy-Schwarz inequality for the trace. Therefore, it suffices to show
that tr(KK) is non negative. Using (7),

. 1 1
tr(KK) = Z{tr(KZXZ) +tr(KX2K) — 2tr(KXKX)} = z{tr(KZxZ) —tr(KXKX)).
This number is positive, again by the Cauchy-Schwarz inequality:

tr(KXKX) = tr((XK)*KX) < tr((XK)*XK) V240 ((KX)'KX) V2 = tr(K2X2) O

Corollary II1.6. Ify and b are geodesics, the map f:t— dist(y(t),d(t)) s a

convezx function of t.

Proof. Distance between y(t) and 4(t) is given by the geodesic «t(s), obtained
as the s variable ranges in a geodesic square h(s,t) with vertices in the starting
and ending points of v and 8, namely {y(tg),d(to),yv(t1),0(t1)}

Taking the partial derivative along the direction of s gives a Jacobi field J(s,t)
along the geodesic fs(t) =h(s,t) and it also gives the speed of «¢. Hence

1 a“t 1
f(t) = ||a_(S)Hoct(s)dS =1 (s, t)||n(s,1)ds
0 S 0

This equation states that f(t) can be written as the limit of a convex combination

of convex functions u;i(t) = [|J(si,t)|/h(s,,¢), S0 f must be convex itself. O
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Lemma II1.7. The following inequality holds for any X,Y € #Hp:
dist(e¥,e¥) = | In (X/2e™"eX/2) |2 > X~V (9)

Proof. Take y(t) =e'%, §(t) =e'¥ and f as in the previous Corollary (by the
orthogonality of scalars we may assume that x,y € HSh). Note that f(0) =0,
hence f(t)/t < f(1) for any 0 <t < 1; hence lim+ f(t)/t < f(1). We assert that

t—0

N 1/2
f(t)/t= %H In <etx/2e*tyetx/2) ||2 —tr (F{ In <etx/2etyetx/2)] ) )

since
%111 (etx/Ze—tyetx/2> _ % ‘t:O In (etx/Ze—tyetx/2>

and the logarithm of p(t) =e'*/2e~tWe'*/2 can be approximated uniformly by
polinomials pn(fB) = Zkocnykﬁk for t close enough to zero (3(0) =1). Then
%B lt—o=x—VYy, and we obtain the desired inequality. ]
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v GLOBAL STRUCTURE

IV.1 The exponential map

Remark IV.1. We will use the notation Exp, i TpLoo — Lo to denote the ex-
1o 1
ponential map of X.,. Note that Expp(V) = p17 eP 2VP zp%. Rearranging the

exponential series we get a simpler expression

1

Exp,(V)=pe? V=P 'p

A straightforward computation also shows that for p,q € £, we have

1 1 1

Exp,'(q)=p2In(p 2qp 2)p

N|—

We will prove that the differential of the Riemannian exponential is an analytic
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IV GLOBAL STRUCTURE

isomorphism; this is a standard result and we follow [Lang95], [McA65]:

Lemma IV.2. Let v be a geodesic such that y(0)=p, v(0)=V. Let] be a
Jacobi field along a geodesicy, with J(0) =0 and J(0) = O0,J(0) =WeT, Ly =
Tv (TpLs). Then, for any t € R.g

(1) = d (Bxpy) o (W)

Proof. Take F(t,s) = Exp, (t(V+sW)). Then Fs is a geodesic for each s and
Fo =v. Let K be the Jacobi field along vy given by %]S:OF. Then

K(t)=d (Epr)tv (tW)=td (Epr)tv (W)

Clearly K(0) = 0; on the other hand if we divide by t and take limit for t — 0,
we get K(0) = d(Epr)o (W) =1d(W) = W. By the uniqueness of the Jacobi
fields along geodesics, it must be that K=7. O

Remark IV.3. If J,K are Jacobi fields along a geodesic vy, then

((03)) (8),K (), ) = (1), (OyK) (1)), +C

for some real constant C. This follows easily differentiating the above expression

and using the derivation property of the covariant derivative.

Lemma IV.4. The ezponential map Exp, : TpXw — Lo has an ezpansive

differential, namely
Hd (Epr)V (W)”Expp(V) > HWHP
foranypely, VET, Lo and We Ty (TpLs) = TpLw.

Proof. From the definition of the exponential map and the metric, together with
Lemma IV.2 and the convexity of the Jacobi fields. O
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LemmalIV.5. Takep € X, VE T L. Set q=Exp,(V), Y:—P]gI (V) (namely
Y=—y(1) of y(t) =Exp,(tV)). Then

(4 (Bxp,), (W), Z), = (W.d (Bxp, ), (2),

Proof. Let J(t) be the Jacobi field along y such that J(1) =0 and 0, ]J(1) = Z;
let K(t) be the Jacobi field along vy such that K(0) =0, K(0) = 0,K(0) =W. By
Remark IV.3,

((TgT) (1,KM), 4y = T, (OgK) (1), , +C=0+C=C

where C equals

<(Dw’/]) (O)’K(O)>y(0) - <](O)> (DYK) (O)>y(0) - _<I(O)> (DVK) (O)>y(0)

Take L the unique Jacobi field along ((t) =y(1—1t) such that [(0) =0 and

DBL(O) =Z. Then L(t) =]J(1—1), so J(0) =L(1) and we get

(ZK(M)y 1) =— (L)L W)y (o)

Since v(0) =p and y(1) = q = Exp,, (V), Lemma IV.2 gives the result. ]

Corollary IV.6. The Riemannian ezponential Exp,, : TpZo — Lo has a C¥
diffeomorphism for any p € Ly, tn particular, exp: Hr — Lo ts a C¥ dif-

feomorphism.

Proof. By Lemma IV.4, for each p € L, and each V € T,X, the differential
map A=d (Expp)v is injective, has closed range and a bounded inverse on its
range. By Lemma IV.5, the adjoint map A* = d(Epr)v* equals d(Equ)iy,
which has the same property. Now Ran(A) =Ran(A) = Ker(A*)L ={0}+, hence
A is surjective. Using the inverse map theorem for Banach manifolds [Lang95|,

we obtain the result. ]
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IV GLOBAL STRUCTURE

Corollary IV.7. If d expy denotes the differential at x of the usual erpo-
nential map X — eX, then the following inequality holds for any XY € #Hy:

_X _X
|dexpx(Y)|[ox =|le” 2dexpx(Y)e™ 2| > ||Y]2

Proof. Rewriting the inequality of Lemma IV.4 aboveforp=1,V=Xand W=Y

we obtain the result. O]

Corollary IV.8. For any X € HS", the map Tx:Y— e X/2dexpy(Y)e X/? is
bounded, selfadjoint for the 2-inner product (when restricted to HSh) and

tnvertible. The tnverse 1s contractive 1.e
T "(2))2 < 11Z)2

Proof. The map is clearly bounded and invertible, the bound for the inverse
follows from the proof of the previous Lemma. To prove that it is selfadjoint,
note that

1
<Tx(Y),Z>2=tr(ZTx(Y)) =tr e—X/2§ — § XPYXde X/27
n!
n>0 p+gq=n-—1

1

=) — ) tr(e X/AXPYXde X/2Z) =
n!

n>0 p+g=n—1

1 X2y
=) ) t(XPeT¥Ave/2X97)=
n>0 p+q=n—I1

:Z— Z tr(e X/2X9ZXPeX/2Y) = tr(Tx(2)Y) =< Y, Tx(Z) >, O

IV.2 The shortest path and the geodesic distance

We measure curves in X, using the norms in each tangent space, namely

1
L(o) = JO () ) dt (10)
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IV.2.  The shortest path and the geodesic distance

We define the distance between two points p,q € £, as the infimum of the

lenghts of smooth curves in ¥, joinint p to q, namely
dist(p,q) =inf{L(x): @ C Ly,  is smooth, x(0) =p, x(1) =q}

For any pair of elements p,q € X, we have the smooth curve ypq C Lo

t
Ypqg(t) =p'/? (v‘”qu_”z) p'/?

joining p to q (which is the unique solution of the Euler equation in ¥ ). A

straightforward computation shows that

1/2 1/2

HVT.Jq(t)Hypq(t) = | In(p q_lp )2 = I—('qu)

Theorem IV.9. Let a,b € L,,. Then the geodesic yYqp S the shortest curve
jorning a and b in X, if the length of curves 1s measured with the metric
defined above (10).

Proof. Let « be a smooth curve in X, with «(0) = a and (1) =b. We must
compare the length of & with the length of y,p. Since the invertible group acts
isometrically for the metric, it preserves the lengths of curves. Thus we may
act with a—1/2
Therefore y1p(t) := y(t) = e'X, with X =Inb. The length of y is then ||X||5.

The proof follows easily from the inequality proved in Corollary IV.7. Indeed,

, and suppose that both curves start at 1, or equivalently, a =1.

since « is a smooth curve in Lo, it can be written as «(t) =eP V), with f =Ino.
Then 3 is a smooth curve of selfadjoint operators with $(0) =0 and B(1) = X.

Moreover,

1 . 1 .
Liy) = [IX]l2 = [X—0]2 = HL B(t) dtf, < L 1B(t)] dt

On the other hand, by the mentioned inequality,

: B B : :
IB(t)]l2 < lle” 2 dexpg(y)(B(t))e 2 |2 =[dexpg ) (B(t))lepry = ll6(t) | oe(t)
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IV GLOBAL STRUCTURE

Thus,
1
Lv) < L la(O)l o) dt =L(a) O

Remark IV.10. The geodesic distance induced by the metric is given by

dist(a,b) = [ ln(a"?ba""/2)| ]2

Corollary IV.11. The sum of the inner angles of any geodesic triangle in

Yoo 15 less or equal than T

Proof. The previous remark, inequality (9) in Lemma II1.7, together with the
invariance of the metric for the action of the group of invertible operators, leads
to

>0+ — 2Ll g cos(oy) (11)

squaring both sides of the inequality. Here l; (i=1,2,3) are the sides of any
geodesic triangle and «; is the angle opposite to ;. These inequalities show that
we can construct an Euclidian triangle in the affine plane with sides 1;. For this

Euclidian triangle with angles $; (opposite to the side 1;) we have
1T =17 +1§ =2l 1l cos(PBs)

This equation together with inequality (11) imply that the angle (; is bigger
than «; for i=1,2,3. Adding the three angles we have

x1tox+oaz <Pr+pPr+PRz=m O

As a corollary of these inequalities we obtain the completeness of the metric

space (X,dist), where dist is the geodesic distance:

Proposition IV.12. L s a complete metric space with the distance induced

by the minimizing geodesics.
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IV.2.  The shortest path and the geodesic distance

Proof. Consider a Cauchy sequence {pn} C L. Again by virtue of inequality
(9) of Lemma II1.7, X, =1In(py) is a Cauchy sequence in #k. Since Hilbert-
Schmidt operators are complete with the trace norm, there is a vector X € #Hp
such that X,;, — X in the trace norm. As the inverse map, the exponential map,
the product and the logarithm are all analytic maps with respect to the trace
norm, dist(pn,eX) = ||In(eX/2e=XneX/2)||; — 0 when n — 0. O
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v CONVEX SUBMANIFOLDS

Convex sets are particulary useful in geometry, and play a major role in the

theory of hyperbolic (:.e. nonpositevely curved) spaces.

V.1 Definitions

Definition V.1. A set M C X, s geodesically convex (also totally convex, or
convex ) if giwven any two points p,q € M, the unique geodesic of Ly, joining

p to q lays entirely in M.

Note that convex sets are connected. We refer the reader to Chapter IV, Section
5 of [SakT96] for a discussion of the different kinds of convex (strong, local, total)

Riemannian objects. However, in our context, all definitions agree, because ¥,
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V  CONVEX SUBMANIFOLDS

is complete and for any two points there exists a unique normal (z.e. unit speed)

geodesic joining them (which is clearly minimizing).

Definition V.2. A Riemannian submanifold M C L, s complete at p e M
if E‘,ng/l 1s defined in the whole tangent space and maps onto M. We say

that M 1s a complete manifold if it 1:s complete at any pont.

Remark V.3. Note that M is geodesic at p if and only if Expg/l = Exp,. In
particular E}ng/l is defined in the whole T,M. So if M is geodesic at p, then M
is complete at p if and only if for any point q € M, there is a geodesic v of M
joining p to ¢ (in other words, if EngA = Exp, maps onto M).

Remark V.4. ¥ is complete; moreover, Exp,, is a diffeomorphism onto X, for
each p € X . The reader should be careful with other notions of completeness,
because, as C.J. Atkin shows in [Atkin75] and [Atkin97]|, Hopf-Rinow’s theorem

does not necessarily hold in (infinite dimensional) Banach manifolds.
These previous notions are strongly related, as the following proposition shows:

Proposition V.5. Let M C Ly, be a Riemannian submanifold of Ly, (with
the induced metric). Then

M geodesically convex <= M complete and totally geodesic

Proof. The proof of (&) is trivial; let’s prove (=). To see that M is complete,
take p,q € M. Then there exists a geodesic & of X, joining p to q, o« C M.
Among curves in M joining p to g, « is the shortest. So « is a critical point of
the variational problem in M, hence a geodesic of M. To see that M is totally
geodesic, take vy a geodesic of M joining p to q. By virtue of the convexity,
there is a geodesic & of X, joining p to q; by the preceding argument « is also
a geodesic of M. We can assume that q is close enough to p for the exponential
map of M to be an isomorphism, and in this situation, geodesics are unique, so

x =1y 1is a geodesic of X . [
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V.2.  An intrinsic characterization of convexity

Remark V.6. The reader should be aware of the fact that the concept of con-
vexity is strong, and completely general (M does not need to have the induced
submanifold metric, in fact, for the definition of geodesically convex to make

sense, it is not necessary for M to have any manifold structure at all).

V.2 An intrinsic characterization of convexity

As always, [, ] denotes the usual commutator of operators in L(H). To deal with

convex sets the following definition will be useful:

Definition V.7. We say that a subspace m C Hyr 1s a Lie triple system 1f
[[A,B],Clem for any A,B,C em.

Remark V.8. Note that whenever a,b,c are selfadjoint operators, d = [a, [b, c]]
is also a selfadjoint operator. So, for any algebra of operators a C H¢, m =Re(a)

is a Lie triple system in #R. This is also true for a Lie algebra of operators a.

Remark V.9. Assume M C L, is a submanifold such that 1 € M, and M is
geodesic at p =1. Then T{M is a Lie triple system, because the curvature

tensor at p =1 is the restriction to TyM of the curvature tensor of ¥, and

%1 (X,Y)Z = —}[[X,Y],Zl.

This particular condition on the tangent space turns out to be strong enough to

ensure convexity; this result is standard:

Theorem V.10. Assume m C Hy is a closed subspace, set M =exp(m) C X,

with the induced topology and Riemannian metric.
If m 1s a Lie triple system, thenp,q e M = pgqp e M

Proof. As Pierre de la Harpe pointed out, the proof of G.D. Mostow for ma-

trices in [Mos55] can be translated to Hilbert-Schmidt operators without any

modification: we give a sketch of the proof here. We assume p =eX, q =¢" with

X,Y € HSP.
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V  CONVEX SUBMANIFOLDS

Set Dx : HS — HS, Dx = Lx —Rx, the difference between left and right multipli-
cation by X in HS (which is clearly a bounded linear operator from HS to HS).
First we establish the identity

Tx(Y) =S"LTLhC(Dx/Z)(Y) (12)
where Tx is the map from Corollary IV.8, and sinhc(Z) = Sinhz(z) =2 >0 (Zi—in]),
is an entire function. Note that sinhc(Z) = ezgg—z. To prove (12), we take deriv-

ative with respect to t in the identity X(t)eX(t) = eX(t)X(t), where X(t) = X+ tY;

after rearranging the terms we come up with
(eP%/2— e Px/2) ¥ = Dx o Tx(V)

Note that if Dx were invertible, we would be set; this is clearly not the case.
However, Dg( =Dx 0Dy is selfadjoint when restricted to HS®, and since Ty is also
sefaldjoint (cf Corollary IV.8), the operator T = Tx — sinhc(Dx/2) is selfadjoint
on HS® (note that sinhc(Z) involves only even powers of Z). The equation above
says that we have proved that Dx o T(Y) =0 for any Y € HS; in other words T
maps HSP into {X}' ={b € HS" : bX = Xb}. A straightworward computation shows
that Tb =0 for any b € {X}/, which proves equation (12) since T is selfadjoint.
Now for X,Y € m consider the curve e*(t) = eXeYe!X, Clearly a(0) =Y € m;
we will prove that « obeys a differential equation in HS® which has a flow that
maps m into m, and with that we will have e*(1) = eXeYeX c e™ = M.
Differentiating at t =ty the equation yields to

) d )
XeX(to) 4 eX(to)X = dexpg(y,)(&lto)) = s ls=0 exp(a(to) +sc(to)) =

=)/ 2T (6(to))e*(t0)/2 = e*(t)/2 sinhe(D oy, )/2) (&(to)) -e*(t0)/2

Note that sinhc(Z) is invertible whenever Z is a bounded linear operator, and

also that the power series for Zcoth(Z/2) involves only even powers of Z; hence
6= senhc ' (Dy/2) 0 (6™ /2 Xe™/? +*/2Xe™*/2) =

— senhc ™! (Da/2) o (Roas2le—as2 +Ryayalias2) X =
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V.2.  An intrinsic characterization of convexity

=senhc ' (Dy/2) 0 (Doasz + Dyas2)(X) =
— senhc ™! (Dg/2)0 (ePo/2 4 e Pa/2)(X) =

=Dgcoth(Dgy/n)(X) =) cnDFX =
n

=) cnDgo--0DA(X) =F(a)

Since D%(X) =[Z,[ZX]],HZ)=)_, an%“(X) can be regarded as a map from m
to m, and since it is clearly an analytic map of HS into HS, it fulfills a Lipschitz
etXeYetX)

condition. Now the unique solution must be «(t) = In( C m. Hence

x(1)

e =pqp € M and the claim follows. ]

Corollary V.11. Assume M =exp(m) C X, as above, and m s a Lie triple

system. Then M 1is geodesically convez.

Proof. Take p,q € M. Then p =eX, q=¢" with X,Y ¢ m. If we set r =
e X/2eYe=X/2 then r € M because e X/2 and e" are in M. Moreover, Z =

In(r) € m. But the only geodesic of X, joining p to q is

y(t)zex/zetzex/z, so yCcM 0O

Corollary V.12. Assume m C Hy 15 a closed abelian subalgebra of operators.
Then the manifold M =exp(m) C L, 25 a closed, convex and flat Riemannian
submanifold. Moreover, M 1s an open subset of m and an abelian Banach-

Lie group.

Proof. The first assertion follows from the fact that m is a Lie triple system.
Curvature is given by commutators, hence M is flat. Since m is a closed subal-
gebra, eX = >T<1—T,L em for any X € m, so M Cm. That M is open in m follows

from Corollary IV.6. [l

Corollary V.13. Assume M =exp(m) s closed and flat. If M 1s geodesic at
p =1, then M 1s a convez submanifold. Moreover, M s an abelian Banach-

Lze group and M 1s an open subset of m.
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Proof. If M is geodesic and flat at p =1, TyM =m is abelian (by Proposition
I11.3). Now we can apply the previous corollary. 0

The definition of symmetric space we adopt is the usual definition for Riemannian

manifolds, see the book [Hel62] by Sigurdur Helgason:

Definition V.14. A Hilbert manifold M s called a globally symmetric space
if each point p € M 1s an isolated fizred point of an involutive isometry

Sp:M — M. The map sp 1s called the geodesic symmetry at p.

Theorem V.15. Assume M =exp(m) s closed and geodesically convexr. Then
M s a symmetric space; the geodesic symmetry at p € M 1s given by

sp(q) =pq~'p for any q € M. In particular, L, is a symmetric space.

Proof. Observe that, for p =eX, q=¢Y, splq) = eXe~YeX; this shows that Sp

maps M into M. To prove that s, is an isometry, consider the geodesic «y/ of
M such that «(0) = q and &(0) =V. Then «x(t) = qetq*]v and

d 1y,
dg(sp)(V) = Fle=o(spoay) =—pa~'Va~'p
Since M has the induced metric, Hpq*]qupuiqﬂp = HVH(ZJ by Lemma II.6
(with g =pq~"). In particular, dpsp = —id, so p is an isolated fixed point of s,
for any p € M. [

Theorem V.10 and its corollaries imply that ¥, (as any symmetric space) con-

tains plenty of convex sets; in particular

Remark V.16. We can embed isometrically any k-dimensional plane in £, as a
geodesically convex, closed submanifold: take an orthonormal set of k commuting
operators (for instance, fix an orthonormal basis {e;}icyy of H, and take p; =
ei®eq, i=1,--- k), now take the exponential of the linear span of this set . In

the languaje of symmetric spaces, we are saying that rank (X, ) = +oo.

Following the usual notation for symmetric spaces, we set Io(M)=the connected

component of the identity of the group of isometries of M.
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Remark V.17. Assume 1 € M C L, is closed and convex. Then, since any
isometry ¢ is uniquely determined by its value at 1 € M and its differential d; ¢,
[o(M) carries a natural structure of Banach-Lie group (this result was proved by
J. Eells in the mid 60’s, [Eells66]). Moreover, the Lie algebra of Io(M) identifies
naturally whith the Killing vectors of M. We can be more precise in this context:
take @ € I(M), and consider

Note that d;@ is a unitary operator of T{M = m (with the natural Hilbert-
space structure), so there is an inclusion J: Ip(M) — M x ¢ (L(m)) given by
@ — (@(1),d1@). We will see later that the unitary operators of the form x —
gxg" (inner automorphisms) are enough to act transitively on M (g must be in
Gm, see Theorem V.29).

Theorem V.18. Assume M =exp(m) s closed and geodesically convex. Then

[o(M) acts transitively on M.

Proof. Take p =X, q =e" two points in M and y(t) :petpqv the geodesic
joining p to q. Note that p =y(1) :pepqv = equ]& If we consider the curve
of isometries @ = s, ((/2)0$p, since @y =1id, then @ C [o(M). Now

1 —X _ 1 —X
Ve eXe XeZVe eX —

—X
1(p) =e? Ve X =

€ q

which proves that [o(M) acts transitively on M. ]

Remark V.19. If M = exp(m) is closed and convex, in particular it is geodesic
at p for any p e M, so T,M = Exp;] (M) :{p%ln(p*% qp*%)p% 1 q € M} (see
Remark IV.1). This observation together with Theorem V.10 proves the identi-
fication

1 1

TpM:p% (M) p2 =p2mp

=

From previous identifications of the tangent space it follows easily (see Remark
I1.2) that an operator V € #y is orthogonal to M at p (that is, V € T,M™) if
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and only if

<p_%Zp_17,V> :<p_%Vp_%,Z> =0 forany Zem
2

2
In particular, M+ =m* ={V € 2R : (V, Z>2 =0 for any Z € m}.

Remark V.20. Note that when m is a closed commutative associative subalgebra

X/2 ¢ m, which also iplies that the map Y — p% -Y-p% is a linear

of g, p17 =e
automorphism of m; so T,M =m =T{M in this case (for any p € M). This also

follows easily from Corollary V.12. Clearly,
TpMJ‘ =TiMt=m* foranypeM

Remark V.21. Assume M C L, is geodesically convex. Then, if v is the geo-
desic joining p to g, the isometry @+ =s,(¢/2)0sp translates along the curve v,

namely

ouly(w) =pei? VopTlpe Voplpeir Vo

—p e3P 'V qup V. SpTV —p e(utt)p 'V —v(utt)
Now take any tangent vector W € T, (,)M, and set
W(t) = (d@t)y () (W) =eI¥P T W e2? TV

Then W(t) is the parallel translation of W from y(u) to y(u+1); namely 0, W=

0 (this follows from a straightforward computation using equation (II.5))

We conclude that the map (d@+t)y () : Ty ()M — Ty (ut+)M gives parallel trans-
lation along 7y, namely (d@t)y () = PitU(y). In particular, since q =7y(1) =
prer IVpipd

1

WHD%(foqp’%)

1 1

1. _1 _1
Z(p~2qp” 2)

N|—=
N|—=

N|—=

_1
p 2-W-p p
gives parallel translation from T, M to TqM.

Remark V.22. It should also be noted that the exponential map of M (whenever

M is a convex submanifold) is the restriction to T,M of the exponential map
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Expp : TpZoo — Lo, hence it is a C¢ diffeomorphism from T,M to M for any
P € M; in particular, when M =exp(m), exp:m — M is a C%® diffeomorphism.

v.2.1 A few examples of convex sets

We list several Lie triple systems of #Hp; for some of them we show in this
manuscript an explicit factorization theorem. The general factorization theorems
(Theorem VI.11, Theorem VI.12 and Theorem VI.13) apply for any of these (to

be precise, to their closures in the trace norm):

1. For any subspace s C #R, the subspace ms ={X € #p : [X,Y]=0VY € s}is

a Lie triple system.

2. In particular, for any Y € #R, my ={X € #Hy : [X,Y] =0} is a Lie triple

system.

3. The family of operators in #r which act as endomorphisms of a closed

subspace S C H form a Lie triple system in #/.

4. Any norm closed abelian subalgebra of A is a Lie triple system, in partic-

ular

(a) The diagonal operators (see section VII). This is a maximal abelian
closed subspace of #R, hence the manifold A (which is the exponential

of this set) is a maximal flat submanifold of .

(b) The scalar manifold A ={A-1 : A€ Ry} is the exponential of the Lie
triple system R-1 C #Hp.

(c) For fixed a € HS™M, the real part of the closed algebra generated by a,

which is the closure in the 2-norm of the set of polynomials in a.

5. The real part of any Lie subalgebra of # is a Lie triple system (in partic-

ular: the real part of any associative Banach subalgebra).

6. Any real Banach-Lie algebra g with a compatible Riemannian product in-

variant under inner automorphisms has a complexification which leads to
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the structure of an [*-algebra, and any L*-algebra can be embedded as a
closed Lie subalgebra of HS (see [CGM90] and [Neh93]).

7. If G is a simply connected semisimple locally compact Lie group, then any
irreducible representation of C*(G) into L(H) maps Cx(G) (the continous
functions with compact support) into HS (see [Bag69]). This inclusion is
also true for any irreducible subrepresentation of the left regular represen-

tation of a unimodular group G.

V.3 Convex manifolds as homogeneous spaces

Definition V.23. A Banach-Lie group is a group G together with a compat-
ible Banach manifold structure. If G 1s a Banach-Lie group, we say KC G
1s a Lie subgroup if K s a subgroup of G which is also a split-embedded
submanifold (hence a closed subgroup) of G.

We recall (for a proof, see for instance [Lang95] or [Lar80]) a result for quotients

of Banach-Lie groups:

Theorem V.24. Let G be an analytic Banach-Lie group, and K a Banach-
Lie subgroup. Then on the left cosets space G/K there exists a unique
analytic manifold strutcture such that the projection 1s a submersion. The

canonical action G x G/K — G/K is analytic.

For any Banach algebra B8, we will denote GL(8) the group of invertible elements.
Note that this group has a natural structure of manifold as an open set of the

algebra, so GL(8) is always a Banach-Lie group with Lie algebra 3.

Remark V.25. The group GL(#), having the homotopy type of the inductive
limit of the groups GL(n,C) (see [Har72], section I1.6) is connected; moreover,

there is a homotopy equivalence
GL(#c) ~S' xS! x SU(o0)

Here SU(oo) stands for the inductive limit of the groups SU(n,C)
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The following result is standard in finite dimension (see for instance, [Hel62]);
we say that G is a selfadjoint subgroup of GL(#H¢) (G* = G) if g* € G whenever
g € G. Note that G is selfadjoint iff g* = g, where g denotes the Lie algebra of
the Lie group G.

We will use | x |= v/xx* to denote the modulus of an element x € 8 (as usual, 38

is an involutive Banach algebra).

Theorem V.26. Fiz a connected Lie subgroup G C GL(#¢) such that G* =G.
Let P be the analytic map

P:GL(#H¢) — GL(#Hc)  where grng* =|g|?

If K denotes the isotropy group of P (namely K=P~1(1)NG with the induced
analytic structure), then g =p®E, where ¢ is the Lie algebra of K and p are
the selfadjoint elements of g. In particular, K 1s a Lie subgroup of G.

Proof. Note that o(g) = g* is involutive so its differential at g =1 gives an
involution O of g that induces the desired splitting of the Lie algebra of G. Now
K is a Lie subgroup because the Lie algebra splits. ]

Remark V.27. For M = exp(m) a geodesically convex closed manifold in X,

consider

m,m] =span{[A,B]:A,Bem}= {Z[Ai,Bd : A{,Bi € m;F a finite set}
ieF

Note that all the operators in [m, m] are skewadjoint. Set gnpg = m@® [m,m]. Then
gm 1s a closed Lie subalgebra of #(¢ because m is a Lie triple system (see [Hel62]).
Since #H¢ is a Hilbert space and g is closed, the Lie algebra splits: it follows
that g is integrable (see [Lang95]). Let Gnm be the connected Lie subgroup of
GL(#¢) corresponding to the Lie algebra g .

Since (A+(B,C])* =A+[C,B] for any A,B,C € m, then M C Gm and G}, = Gm.

It is also clear that € = [m,m] (in the notation of Theorem V.26). Gp is the

smallest Lie group containing M.
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The elements of M are indeed the positive elements of Gpq, and the elements
of K the unitary operators of Gpq; we prove it below. Note that when m is an

abelian Lie subalgebra, gng = m and also Gnpy =M C m is an open set.

Lemma V.28. With the notation of the previous remark and the hypothesis
of Theorem V.26, we have P(Gpm ) C M.

Proof. Since gny splits, there are neighbourhoods of zero U, C m and U C €=
[m,m] such that the map Xy + Y — eXme¥t is an isomorphism from Um & Uy
onto an open neighbourhood Vp of 1 € Gp. Clearly, the group generated by
VM is open (and closed) in G4, and so is the whole of Gpq. So, for any g € Gz,

g — (eX]eY1)O(1 __.(eXneYn)(Xn

for some selfadjoint operators X; € U,,, some skewadjoint operators Y; € Uy, and
Xy = i] .

Now eXeYeX € M whenever X,Y € m (see Theorem V.10), so mere inspection
of the expression for P(g) = gg* shows that P(g) will be in M if we can prove
that eYeXe™Y € M whenever X € m and Y € ¢ (namely, if we can prove that
kMk* C M for any k € K). It will be enough to show this holds for X € m and
Y =) ;[Ai,Bil € [m,m] because M is closed. We assert that this is true, but to
avoid cumbersome notations we write the proof for Y = [A,B]. The proof of the

general case is identical.

Consider the map F: #r — #Hg given by F(z) = [[A,B],z]. Since F maps m into
m, the flow of F in m stays in m, so the ordinary differential equation X(t) =
F(X(t)) has unique solution in m if X(0) € m is given (see [Lang95]). Take x(t) =
e HABIX e~ tIABl Then (0) = X € m; moreover

&(t) =e M PI[A B], X] e A B = [[A B],e A BIX e THA B = Fa(t))
which proves that «(t) € m for any t > 0. In particular,

x(1)=e ABIX e ABl e
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As e A Bl ig a unitary operator, exponentiating both sides leads to

e ABlX e~ [ABl oM O

The previous lemma will be used to prove the first of the following results:

Theorem V.29. If M =exp(m) is convex and closed, and Gy C GL(#H¢) s
the connected Lie subgroup with Lie algebra gnpg = m@ [m,m], then

(a) P(Gm) =M, so M 1s a homogeneous space for G .

(b) For any g=|g|ug (Cauchy polar decomposition) in Gy, we have

lgl=v99* € M C G,

and also ug € K C Gy where K 1s the 1sotropy Lie subgroup

K={ge€ Gm : gg* =1} with Lie algebra ¢ = [m,m]
In particular, Gny has a polar decomposition

GM ~ M x K :P(GM) X U(GM)

(¢) M=P(Gm) =~ Gm/K
(d) M has nonpositive sectional curvature.

(e) For g e Gm, consider 1g(r) =grg*. Then I:Gpm — [o(M).

(f) Take p,q € M, and set g :p%(p*%qp*%)%p Ie Gm. Then 14 s an

isometry wn Io(M) which sends p to q, namely Gpm acts transitively

and isometrically on M.

Proof. Since any p € M is the exponential of some X € m, we get p = P(eX/2),
which proves that M C P(Gpq); the other inclusion is given by Lemma V.28.

To prove (b), note that P(Gap) = M = exp(m); namely for any g € Gm, gg* =
P(g) € M; hence gg* = eXo for some Xy € m which implies that | g |=eX0/2 ¢
M C Gm. By definition, ug =| g |=T. is an element of Gy (and clearly ug € K).
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V  CONVEX SUBMANIFOLDS

Statement (c) follows from Theorem V.26, Remark V.27 and statement ().

The assertion in (d) follows from (a) and the fact that M is totally geodesic,
together with equation (5) in the proof of Proposition III.3.

To prove (e) , note that Iy is an isometry of M because M has the induced
metric so Lemma I1.6 applies; from Lemma V.28 we deduce that kMk* C M for
any k € K; from Theorem V.10 and statement (b) follows easily that I maps M

into M, since Gp is connected, we have the assertion.

Statement (f) follows from statement (e) and the proof of Theorem V.18. N

From folk results (or from the classification of [*-algebras, see [Neh93| and
[CGM90]) follows that

[HS,HS]=HS and [HS™ HS" =iHSh,

so taking m = #p = R®HS™ we get ¢ = iHSM, hence gm = R® HS = #¢ /iR,

hence
Gy, =GL(#c)/S' ={a+a;xeR=p, acHS and — o ¢ o(a)}

In the preceding line o(a) denotes the spectrum of a as an element of L(H).
Clearly P(Gx_ ) =P(GL(#)) = XL since any positive invertible operator has an
invertible square root. On the other hand it is also obvious that the isotropy

group K equals U (#¢) (the unitary group of #¢, see section X), so

Corollary V.30. There 1s an analytic isomorphism given by polar decom-
position
Loo = GL(#Hc)/ U (#c)

The manifold of positive invertible operators X, 1s a homogeneous space
for the group of invertible operators GL(Hc), which acts isometrically and

transitively on X.

This last statement is well known, and Theorem V.29 can be seen as a natural

generalization in this context.
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vi HFACTORIZATION THEOREMS

Combining the usual theory of Hadamard manifolds with some ad-hoc techniques
for the infinite-dimensional context, we shall prove that given a geodesically
convex closed submanifold M of £, there is a unique geodesic y joining p and

M, such that the length of v is exactly the distance between p and M.

V1.1 Geodesic projection

We will use the first and second variation formulas for curves in Riemannian

manifolds; we refer the reader to [Lang95].

Proposition VI.1. Let M be a geodesically convex subset of L., and let

P € XLy. Then there 1s at most one normal geodesic y of X, joining p and
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M such that L(y) =dist(p,M). In other words, there is at most one point
q € M such that dist(p,q) =dist (p,M).

Proof. Suppose there are two such points, g and r € M, joined by a geodesic
Y3 € M, such that L(y;) =dist(p,q) =L(y2) =dist(p,r) =d (p,M). We construct
a proper variation of vy =y, which we call T%.

The construction follows the figure below, where
17 1 1/ 1 aNs 1o a7t
Gsﬁ)=:0w,ﬂz=p2[p 2qZ(q Irq 2) q2p 2} p?

is the minimal geodesic joining p with y3(s).

o(s,t) if 0<t<1
I'(s,t) =
Y3(s(2—t)) if 1<t<2

t,0) if 0<t<1 t) if 0<t<1
i =roy =4 OB ostsl_ gy arosts
q i 1<t<2 q i 1<t<2

SO

. vi(t) if 0<t<T
Y(t) = ]
0 if 1<t<2

Also note that the variation vector field (which is a piecewise Jacobi field for
the curve v) is given by equations
- 22(¢,0) if 0<t<T
Vit) =5, (t0)=
S
(2—t)y3(0) if 1<t<2
If A;y denotes the jump of the tangent vector field to vy at t;, namely y(t?) —

v(t;), and T is a proper variation of vy, then the first variation formula for
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VI.1. Geodesic projection

v:la,b] = X reads

d b k—1
91 55l -oL () == | (vie, De(t) de = 3 (Vito), acd)

a i=1

where D; stands for the covariant derivative.
In this case, Dty is zero in the whole [0,2], because vy consists (piecewise) of
geodesics. The jump points are to =0, t; =1 and t, = 2, so the formula reduces

to
o d .
VI oo L Ts) == (V(1), A1)
Thus, we get

(33(0), 71 (1) = |, LT 11

Recall that y3 C M, and that y; is minimizing. Then the right hand term is
zero, which proves that v, and y3 are orthogonal at q. Similarly, vy, and y3 are
orthogonal at r.

Hence, the sum of the three inner angles of this geodesic triangle is at least .
It follows from Liemma IV.11 that the angle at p must be null, which proves that

v1 and vy, are the same geodesic, and uniqueness follows. ]

Now, we consider the problem of the existence of the minimizing geodesic. We

can rephrase the problem in the following way:

Theorem VI.2. Let M be a geodesically convex submanaifold of X, andp a
point of X, not in M. Then existence of a geodesic joining p with M such
that L(y) =dist(p,M) is equivalent to the existence of a geodesic joining p
with M with the property that v 1s orthogonal to M.

Proof. In fact, the existence of such a geodesic is equivalent to the existence of a
point q, € M such that dist(p, M) =dist(p,qp ), and we will show that if ge M
is a point such that yqp is orthogonal to M at q, then dist(q,p) = dist(M,p).
The other implication follows from the uniqueness theorem.

For this, consider the geodesic triangle generated by p,q and d, where d is any
point in M different form q. As yqp is orthogonal to TqM, it is, in particular,
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VI FACTORIZATION THEOREMS

orthogonal to yqq. Then, by virtue of the hyperbolic Cosine Law (equation
(11)), we have

L(vap)? > L(vgp)? +L(vqa)? > Llvqep)?

which implies dist(q,p) < dist(d,p). [l

We conclude that the existence problem is equivalent to the question:

Is NM, the normal bundle of M, diffeomorphic to the whole X, via the

exponential map?

The answer to the local version of this question is yes, by virtue of the inverse
function theorem. The reader can find the Banach space version of such theorem
in [Lang95].

Lemma VI.3. Set E:NM — L, the map which assigns (q,V) — Exp, (V).
Then there 1s an open netghbourhood M C Q¢ C Ly such that Q. C E(NM)
and Q. is C® diffeomorphic to the open tube {(p,V):|V|p < e} C NM.

Proof. With the proper identifications, the differential of E at (1,0) € NM is
the identity map because TTM & TyM+ =T; L. The inverse map theorem gives
a local neighbourhood, and the invariance of the metric for the maps I, : X —
p%Xp% (p € M) gives the desired tube. n

Remark VI1.4. Clearly E(NM) C X, is the set of points in X, with the following
property: there is a point g € M such that dist(q,p) = dist (M, p).

Note that the map Ty : E(NM) — M, which assigns to p € E(NM) the unique
point g € M such that dist(q,p) = dist (M, p) is injective. This map is obtained
via a geodesic that joins p and M, and this geodesic is orthogonal to M, therefore

we will call TTp (p) the foot of the perpendicular from p to M.

Theorem VI1.5. The map Tz ts a contraction, namely

dist (TTm (p), TTm(q)) < dist(p, q)
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VI.1. Geodesic projection

Proof. We may assume that p,q ¢ M, and that TTapq(p) #TTm(q). If yp is a
geodesic that joins TTap(p) to p and y4 is a geodesic that joins TTpm(q) to g, set

f(t) =dist (vp(t),vq(t))

Note that f(0) =d (TTm (p),TTm(q)) and f(1) =dist(p,q). We also know that f is
a convex function of t (Corollary II1.6). If we prove that f/(0) > 0, it will follow
that f is monotone increasing, and we will have proved the assertion.

Take a variation o(t,s), being o(s) the unique geodesic joining vy (t) to vq(t).
Then o(t,0) =vp (t), o(t,1) =v4(t), 0(0,s) =7y(s) is the geodesic joining a1 (p)
to TTa(q) (which is contained in M by virtue of the convexity), and finally o(1,s)
is the geodesic joining p to q. This construction is better shown in the following

figure:

Note that f(t) =L(o¢). We apply the first variation formula to this particular
o, to get
d

¥l 5

1
Loy = —L (V(s), Ds7(s))ds + (V(1),7(1)) — (V(0),7(0))

The fact that v is a geodesic and observation of the figure above reduces the

formula to

Y[l f/(0) = —(V(1),—¥(1)) + (= V(0),7(0))

Looking at the figure also shows that V(0) =v,(0), V(1) =v4(0). Recalling that
the angles at M are right angles, we get f/(0) =0. ]
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Remark VI.6. In the preceding proof, f /(0) = 0 implies that it is exactly in
this geodesic joining the projections that the distance between the projecting
geodesics is minimal. This is related with the fact that X is a symmetric
manifold. There is an alternate proof for the fact that f/(0) =0, which involves
nothing but a little bit of the Riesz functional calculus; we include it because
we think the proof shows in what extent this result can be translated to other
algebras of operators such as a von Neumann algebra with a faithful trace (where
the Riemannian structure is not necessarily complete in the metric sense). See
Remark XI.5. For simplicity we assume that M = exp(m) where m ¢ HS" is a

closed Lie triple system.

Proof. Let’s consider the square of the distance function

£2(t) = dist® (vp (1), vq (1)) = dist® (Expriy, () (tV), ExPriy, () (TW))

Naming r =TTpm (p), s =TTm(q), recall that

Since V € (TyM)* and W € (T;M)™, we have

< V,T%XT% >.=tr <Xr_17Vr_%) =0 for any Xem=T{M and
(13)
< \/V,S%YS% >g=1tr (Ys_%Ws_%> =0forany Yem=T1M

Now we use the formula dist(e”,eB) = ||In(e*/?e " Be?r/2)||; for A = In(vyp(t))
and B =In(yq4(t)), to write

1 1 1 1
2(0) = [ln(vivs VBB =tr (mz(vévgws))

Now assume that C is a simple, positively oriented curve in C, around the spec-

trum of g = r2s~1r2. Then we can use the Cauchy formula to calculate In?(a)
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VI.1. Geodesic projection

for any element a € #¢ such that o(a) C int(C), namely

lnz(a):L,J In?(z)(z—a) " 'dz (14)
C

1 1
Naming o(t) =vp (t)ya1 (t)yp(t), this formula holds true for «p = «(0) and for
o(t) for t sufficiently small, since « is a smooth function of t and the spectrum

is a lower semicontinuous function.

Note that

_1 1 _1 1
(0 =tr (v 2Oy (O (1)) = tr (v (O I (a()yE (1))
but for X invertible in #c, Xg(a)X~ ! = g(XaX~") for any element a € #¢ and

any analytic function g in a neighbourhood of o(a); this follows from formula
(14) above and the identity X(z—a) "X~ ! = (z—XaX~")~'. This leads to

1

P = (18 [y (0vg (0)]) = 75

JC In2(2) tr [<z—yp(t)yq‘ (t))q} dz

by the linearity of the trace.

Now we compute f’'(0); note first that yp(O)yal (0) =7s~! and also that

d

a4 1) — Ve e Te—T
dttzoyp(t)yq (t) Vs +rs™ 'Ws

Using the ciclicity of the trace we get

d 200y 1 5 1\ 2 . » B B
at:of (t)__ﬁjcln (Z)tr[<7‘_r5 ) (Vs ' +r1s '"Ws )| dz=

—tr K_ﬁJCIHZ(Z) (z—rs1>_2 dz) (—Vs*] —|—rs1Ws1>]

Now we integrate by parts the first factor inside the trace, and what we obtain

(since %lnz(z) —=2In(z)z~ " =2z "In(z) and C is a closed curve) is
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1 —1 ! —1
Z—mJZIn(z)z (z—rs ) dz | Vs +

L C

=—tr

1 -1
+tr —,JZID(Z)Z_1 (z—rs”) dz | rs~T"ws™!
2mi

C

So, by ciclicity of the trace and linearity,

2(0)£/(0) = —ﬁ JZln(z)z] tr [51 (z—rs’] ) B v} dz+
C

+L, JZlm(z)z_1 tr [s_
2mi
C

N—=
/N
[\
|
_g
%)

|
N———
|
—-g
%)
|
3
|
N|—
| I
o
N

Now we use the identities

1 [ -1
Zf(O)f’(O):—R 2In(z)z T tr s~ 1r2 (z—r%s ]r%> T ZV} dz+
vC L
1T [ 1 S S I N R U I B |
— | 2In(z)z” " tr (z—s 2rs 2) s 2Zrs 2s 2Ws 2| dz=
27 |
C

1 1

= —2tr [ln(r%s_]rf)r_ZVr_ﬂ + 2tr [ln(s_%rs_%)s_%Ws_%] =
=0+0=0

by the orthogonality relations (13), naming X = 111(1‘%341“%) (recall that M is
convex), and Y = ln(s_%rs_%). Since we assumed that r # s, we have f(0) #£ 0,
which proves that f/(0) =0. O
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VI.1. Geodesic projection

Let’s get back to our problem: we wish to prove that E(NM) = X,,. We will do
that by proving that it is both open and closed in ¥.,. First we to prove that it

is open:

Lemma VI.7. For A € [1,+00), set nx: E(NM) — E(NM) by na(Exp, (V)) =
Exp,(AV). Then E(NM) = }\L>J1n;\(Q€), and each My : Q¢ = Ly s a C¥

diffeomorphism with its image.
Corollary VI.8. The set E(NM) s open in X

Let’s prove the Lemma; the geometric idea of the proof is due to Porta and Recht
[PROY4]:

Proof. Clearly Ux>1maA(Qe) C E(NM). On the other hand, if r = Exp, (V) and
|[VIlp < € then r € Q¢ =11(Q¢). We may assume that ||V||, > €; taking A =
|V|lp/c for any ¢ < e does the job.

We will prove that, for any A > 1 and r € Q¢, d(Ma); : ThZoo = Ty, (1) L0 15 @
linear isomorphism, and this will prove the assertion. Take o« C Q. a geodesic
such that «(0) =r and &(0) = X. Since « is a geodesic, we have dist(x(t),r) =
t|&(0)]|+ for t > 0 (see section IV.2). Set B(t) = ;\ooc then B(0) =mx(r) and
B(0) = d(ma), (X). Clearly dist(B(t),na(r)) <LE(B) = [ IB(s)]/p(s)ds. On the
other hand,

dist(na ((t)),na(r)) = dist((t),r) = t[|X]]

where the inequality comes from the proof of Theorem VI.5, since A > 1. If we

put together these two inequalities and divide by t, we get

10t .
N IBIARESEY
and taking limit for t — 0" gives

ld M)y (X) sy = Xl

Now set Ay = I;}jm od(na), oIy, where the maps I, :V — p%Vp% are linear
isomorphisms (see Lemma I1.6). If we consider Ay : T1 X — T1 X = #HR, what
the inequality above says is that ||Ax(X)||2 > ||X]|2 for any X € #R.
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Clearly Ny =idg, and d (1), =1idT,5_; since the map (A,r) — nx(r) is analytic
from R.g X Q¢ to X, there is an open neighbourhood of T € R such that Ay
is an isomorphism. Assume A, is invertible for A € [1,m): then HAX1 L) <1

for any A € [1,m). Since A, = lim A, (in the operator norm of L(#g)) and

li
A—m
”AmAX] — 1] < [JAm — A\ < Tif A is close enough to m, we get that AmA}ﬂ is
invertible, thus A, is invertible. Since the maps I, are isomorphisms, we have

proved that d(n,), is an isomorphism for any A > 1, for any r € Q.. ]
Now we are ready to prove the main result of this section:

Theorem V1.9. Let M be a geodesically convez, closed submanifold of X .
Then for every point p € Ly, there is a unique normal geodesic 'y, joining
p to M such that L(yy,) =dist (p,M).

Moreover, this geodesic 1s orthogonal to M, and 1f TIp : Lo — M 1s the map
that assigns to p the end-point of vy, then TIpm is a contraction for the

geodesic distance.

Proof. The theorem will follow once we prove that E(NM) = X,,. But since
Y~ 1s connected and E(NM) is open, it is enough to prove that E(NM) is also
closed.

Let p € E(NM). There exist points gn € M, Vi, € ani\/lL such that

p =limpy =limExp,, (Vn)
n n

Now observe that g, =TTpm (pn), so dist(qn,qm) < dist(pn,pm). As {pn} con-
verges to p, it is a Cauchy sequence. It follows that {qn} is also a Cauchy
sequence; since M is closed (and then complete), there must exist a point g € M
such that q = liT.tln gdn. We assert that dist(p,q) =dist(p,M). First observe that

dist(p, qn) < dist(p,pn) +dist(pn,qn)
and dist(pn,qn) = dist(pn,M), so
dlSt(p> qn) S dlSt(p>pn) +d15t(pn) M)

Taking limits gets us to the inequality dist(p,q) < dist(p, M), which shows that
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VI.1. Geodesic projection

the distance between p and M is given by dist(p,q). This concludes the proof.
[

Note that X, decomposes as a direct product: with the contraction Ty, we can

decompose ¥, by picking, for fixed p,
1. the unique point q =TTp (p) such that dist(p,q) =dist(p,M)

2. a vector V), normal to T¢M such that the geodesic in L., with this initial
velocity starting at q passes through p.

Note that V,, = Expﬁ:v[ (p), and also ||Vp||p =dist(p,M).

(p)
Since the exponential map is an analytic function on both of its variables (recall
that, for any q € L, and any V € #R, Exp (V) = qequ), we get

Theorem VI.10. The map p — (TTm(p), Vp) 1s the inverse of the exponential
map (q,Vq) — Expq(Vq), and it is, in fact, a real-analytic isomorphism
between the manifolds NM and .

This is a remarkable global analogue of the (linear) orthogonal decomposition of
tangent spaces; we can read the theorem in a different fashoin if we recall that
all points and tangent vectors are operators. This theorem is inspired mainly by

the results on C*-algebra decompositions [CPR91]

Theorem VI1.11. Fiz a closed, geodesically conver submanifold M of X.
Take any operator A € Lo,. Then there exist operators C € L,V € Hgr such
that Ce M, V€ TcM*, and:

A=CeC 'V (15)

Moreover, C and V are unique, and the map A — (C,V) (which maps X, —

NM) s a real analytic isomorphism between manaifolds.
Naming B = C%, W = C_%VC_%, equation (15) reads

A =Be"B
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for unique B,W.

Using the tools of section V, we can restate the theorem in terms of intrinsic

operator equations (see [Mosb55] for the finite dimensional analogue):

Theorem VI1.12. Assume m C Hy s a closed Lie triple system. Then for
any operator A € Hp, there exist unique operators X € m, V € m’ such that

the following decomposition holds:

The operator X 1s the unique minimizer in m of the map

Y |In(e?/2eYer/2) |,

As a corollary, we obtain a polar descomposition relative to any fixed convex
submanifold. This decomposition resembles the Iwasawa decomposition of (finite

dimensional) Lie groups, see [Hel62]:

Theorem VI1.13. Assume M =exp(m) C L ts a closed, conver submanifold.

Then for any g € GL(#H) there exists a unique factorization of the form

Vu where X em, Vemt and u e u(#c) is a unitary operator.

eX eV

g=¢eXe
The map g+ ( ,u) s an analytic byection which gives an tsomorphism
GL(#¢) ~ M x exp(m™) x U (#¢)

Proof. Since gg* € L, we can write gg* = eXe?VeX with X € m and V € m'.

Setting u = (eXeV) 'g=e"Ve Xg we have
uuw*=e Ve Xggte Xe V=1 andalso uu=g'e Xe Ve Ve Xg=1
Hence u is a unitary operator and g = eXeYu. This factorization is unique

X1 e X1 eZV1 eX1 — exzezvzexz, 30

because if g =eX1eV1u; = eX2eV2u,, then gg* =e
X1 =X3, Vi =V, and then u; =u,. [
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VII.1 Preliminaries

We will use the factorization theorem in several ways; for convenience we first

state the following lemma, which we will be useful on several ocasions:

Lemma VII.1. (the generalized ezponential formula): for the exponential

map 1n Xy, we have

Exposa(B+b) = (a+a)e! @ (BTP) — (x4t q)[1+ (x+a) " (B+Db)+--]

2
B (B) v
X [od

> —oeP/* 4k

=(x+a)

where aeP/* ¢ R and k is a Hilbert-Schmidt operator.
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We need some remarks before we proceed with the main applications. Fix an

orthonormal basis of H.

1. The diagonal manifold A C X, we define below is closed and geodesically

convex.
A ={d+a>0:d is a diagonal Hilbert-Schmidt operator and « € R}

This is due to the fact that the diagonal operators form a closed abelian

subalgebra (see Propositions 1.3 and Corollary V.12 ).

2. If po € A, then T, )A ={x+d; x € R, d a diagonal operator} = T1A by Re-
marks V.19 and V.20.

3. Consider the map A — AP = the diagonal part of A. Then

(a) For Hilbert-Schmidt operators we have AP = Y p;Ap; where con-
i

vergence is in the 2-norm (and hence in the operator norm); here
pi =ei®e; = (ei,-)eq is the orthogonal projection in the real line
generated by e;

(b) (AD)P = AP

(c) tr(APA) =tr((AP)?)

(d) tr(APB) =tr(AB) if B is diagonal

4. The scalar manifold A ={A-1 : A € R.(} is geodesically convex and closed
in Ly, with tangent space R-1 C #p

5. A vector V=pn+4+ue TpOAL if and only if © =0 and uP =0. This follows
from: Remarks V.19 and V.20, the fact that p4+uP € Tp,4, and Remark
(3) of this list.

VII.2 The factorization itself

Theorem VII.2. (winfinite dimensional diagonal factorization): Take any

selfadjoint Hilbert-Schmidt operator a. Then there exist a real scalar A >
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0, a positive wnvertible Hilbert-Schmidt diagonal operator d and a Hilbert-
Schmaidt selfadjoint operator with null diagonal V such that the following

formula holds:

QA= (4Nl EFN TV (@A deldh) IVIan 2 (g )
Moreover (for fixed A\) d and V are unigque and a+A+— (d,V) (wich maps
Yoo — NA) s a real analytic 1somorphism between manifolds.

Proof. Let A\=|a||co+€, for any € >0. Thenp=a+A € Xy, and ITa(p) =d+a.
The operator d satisfies our requirements. Now pick the unique V € Tq, A"
such that Exp4, «(V) =p, this operator V has zero diagonal because of remark
(5) above. As a consequence of the ’exponential formula’ (Lemma VII.1), x = A,
for in this case, 3 =0. [

This theorem can be rephrased saying that, given a selfadjoint Hilbert-Schmidt

operator a, for any A € R- such that a+ A >0, one has a unique factorization
a+A=De""D

where D = (A+ d)% >0 is a diagonal operator and W =D"'VD ! is a selfadjoint

operator and has null diagonal.
Corollary VII.3. For any g € GL(#¢), there 1s a unique factorization
g =deWu,

where d 1s a positive invertible diagonal operator of #Hc, W 1s a selfadjoint

operator with null diagonal in #Hc and u 1s a unitary operator of Hc.

Proof. 1t is a consequence of the previous remark together with Theorem VI.13.

[

We now observe that, for finite (strictly positive) matrices, we could choose A =0
(in a sense we will make precise) because any matrix has finite spectrum. With

this observation in mind, we can state and prove a finite dimensional analogue of
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the factorization theorem, which has a simpler form. We should remark that (in
this particular case) this result is exactly Theorem 3 of [Mos55] by G.D. Mostow
(see also [CPRO1] by Corach, Porta and Recht). The only thing to remark is
that the geometric intrepretation of the splitting is crystal clear in this context,
because the diagonal matrix D is the closest diagonal matrix to A, and V is the
initial direction of the geodesic starting at D which joins D to A. We will use

the standard notation
Mi=MeCV™: M =M" o(M) C (0,+00)}

The dagger (1) stands for complex conjugation of the coefficients of M.
We will use M, to denote the tangent space of M, at Id; recall that M} is

open in My, and also that M;, can be identified with the hermitian matrices of
Rnxn.

Theorem VIL.4. (finite dimensional diagonal factorization): Fiz a positive
invertible matriz A € M. Then there exist unique matrices D,V € My,
such that D s diagonal and strictly positive, V 1s symmetric and with null

diagonal, which make the following formula hold:
A=De"D

Moreover, the maps A— D and A — V are real analytic.

Proof. We will prove the result using block products. For this, choose an ortho-
normal basis of H, and write Hilbert-Schmidt operators as infinite matrices. In
this way we can embed M, in X, by means of the map that sends A to the
first n x n block:

A — A0 =a-+1, where a = A= 0 e HS™
0 1 0 0

Note that a+1=A+Pkera)L, and that a+1> 0 because A > 0.
Using the infinite dimensional theorem, we can factorize a+1=deV d, where V =
d~"Wd~! and W is orthogonal to the diagonal submanifold A C X,. Obviously,

d:(D 0 )
0 Dg
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VII.2.  The factorization itself

but note that V =1n (d_1 (a+1)d_1) SO

D'AD' 0 In(D-'AD 1) 0
V:h’l —
0 D2 0 In(D?)

which shows that the desired V (the first block of V) has the desired properties,
as V has them. Now a+1=deVd reads

(59)=(0 0. )=t (§ o ) (5 0 )-
(50 ) (5 o2 (60 )= (757 0)

and comparing the first blocks, we have the claim. ]

Remark VIIL.5. In [AV03] Andruchow and Varela prove that there is a natural,
flat embedding of M = M} into L., (Proposition 4.1 and Remark 4.2). This
embedding makes M| a closed, geodesically convex submanifold of X,,. We will

postpone a projection theorem for this submanifold for the sake of simplicity.
See Theorem VIII.10
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viii A FOLIATION OF CODIMENSION ONE

In this section we describe a foliation of the total manifold, and show how to
translate the results from previous sections to a particular leaf (the submanifold

Y1). We begin with a description of the leaves.

VIIL.1 The leaves X,

Recall that we write HS™ (hermitian Hilbert-Schmidt operators) to denote the
closed vector space of operators in #r with no scalar part. We define the follow-

ing family of submanifolds (for fixed A € R-):
Sr={a+A€ Ly, acHS"

Observe that Xy NXg =0 when A # 3, since a+A=b+f3 implies a—b = —A.
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VIII A FOLIATION OF CODIMENSION ONE

In this way, we can decompose the total space by means of these leaves,
Lo=]]2Za
A>0
Theorem VIII.1. The leaves ¥, are closed and geodesically convex subman-

ifolds of L.

Proof. The fact that the projection IT5 is a contractive map implies that X, is
closed, one must only observe that ¥ = WK] (A).

To show that X, is convex we recall that, by virtue of the ’exponential formula’
(Lemma VII.1), for any real A >0 and any p € X,, there is an identification via
the inverse exponential map at p, TpZ) = HSM. [

Remark VIII.2. Take d+c € TaJr)\Z)\L. Since TqyaX can be identified with
HS", condition
(3+c,d)giy=0 VvV deHS"

immediately translates into

tr {(a—H\)1 {(5+c)(a—|—7\)1 —;] d} =0 vV deHsh

This says that To1AZy = span(a+A); shortly T, L3 = span(p) for any p € I,.

Proposition VIIL.3. Fiz real c, A >0. Set Ty A =Tz, [z, :Zx — Zx. Then
1. Mg a(p) = %p, so My A(p) commutes with p

2. Ty A 18 an isometric byjection between Ly and L), with inverse IT) 4.

3. Mg n gives parallel translation (see Remark V.21) along ’vertical’ geo-

desics joining both leaves.

Proof. Notice that for a point b+« € £, to be the endpoint of the geodesic vy
starting at a+ A € £, such that L(y) =dist (b+ «,Z,), we must have

b+a=Exp,,a(x+c)=Expg alk.(a+A)) —ef(a+A)
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because x+c € Ta+>\Z>\L. From Lemma VII.1, we deduce that k =1n (%), and
a= %b. So, b+a = $(a+A) and also

y(t) = (a+A) (3"

Now it is obvious that TT\(b+ «) = %(b + o) and commutes with b+ «.

To prove that TT is isometric, observe that

: (AN A :
st (1o (), T () = st (3,20 ) = s,

by inspection of the geodesic equation (2) of section II and Remark II.4.
That TT gives parallel translation along y follows from q = %p and Remark V.21.
O

Proposition VIII.4. The leaves Xy, L) are also parallel in the following
sense: any minimizing geodesic joining a point in one of them with its
projection in the other is orthogonal to both of them. For any b+ o € L,

dist(b+ o, Iy) = dist(Z, Zp) =/ In (%) |

In particular, the distance between ,\ in the scalar manafold A\ 1s given by
the Haar measure of the open interval («,3) on R-y. (This was remarked
by E. Vesentini in his paper [Ves76] ).

Proof. 1t is a straightforward computation that follows from the previous results.
[

Since X, is a symmetric space, curvature is preserved when we parallel-translate
bidimensional planes; note also that vertical planes are commuting sets of oper-

ators, so

Proposition VIIL.5. For any point p € L), sectional curvature of vertical

2-planes 1s trivial.
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VIII A FOLIATION OF CODIMENSION ONE

L(y)=L(d)=dist(Z,,%,)

Figure 1: The geodesics v and § are minimizing, the geodesic 3 is not

Proof. We know that p generates T, Z)i\; take any other vector Ve T,X, = HS™.
Equation (4) of section II says

<Rp(p,V)\4p>p=—%<Hp_1p,p_1v}p_1v},pp_1> =0 O

2
Theorem VIII.6. The map T:X, — X1 XA, which assigns
(alo+ere)
at+a— [ —(a+a),x
x

15 bijective and 1sometric (X1 and A have the induced submanifold metric).

In other words, there 1s a Riemannian isomorphism
Zoo ~ Z] X A
Proof. Another straightforward computation. [

The previous theorems show that the geometry of X, is essentially the geometry
of X1; in particular, the factorization theorem inside £ has a simpler form; we

state it below

Theorem VIIL.7. Fiz a closed, geodesically conver submanifold M of X.
For any a+1 € X1, there 1s a selfadjoint Hilbert-Schmidt operator d such
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that d+1 € M, and a selfadjoint Hilbert-Schmidt operator V, such that
V € Tq.1M*, which make the following formula hold:

—1
1+d) \%

T+a=[1+de
Moreover d and V are unique, and the map 1+a— (1+d,V) (which maps

Y1 to NM) s a real analytic isomorphism between manifolds. Equivalently,

,% 1
1 (14+4d) V(1+d) 2

T+a=[1+d]Z e [1+d]2

The intrinsic version of the theorem reads (see Theorem V.11):

Theorem VIIL.8. Assume m C HS™ is a closed subspace such that
x,x,yll€m for any x,y €m

Then for any a € HS™ there is a unique decomposition of the form

where x €m and v € HS™ is such that tr (vz) =0 for any z€m. The operator

X 1S the unique minimizer in m of the map

Yy tr <1n2(ea/2e_yea/2)>

VIIL.2 The embedding of M} in X;

We are ready to state and prove a projection theorem for M = M (the positive

invertible n x n matrices with complex coefficients).

First note that we can embed M}, < X for any n € N (see the proof of Theorem
VII.4). Fix an orthonormal basis {ennen of H, set pij = e; ®e;, and identify
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VIII A FOLIATION OF CODIMENSION ONE

M,, with the set

n

h

T = Z a; pij : a;=a; ER» CHS
i,j=1

In this way, we can identify isometrically the manifolds M, with the set
_J.T.
P = {e :Te ‘T} C X

and the tangent space at each e’ € 2 is 7. 2 is closed and geodesically convex
in 1 by Corollary V.11
Let’s call S =span(eq,---,en), ST =span(eny1,éns2---). The operator P, is

the orthogonal projection to S and Qg =1— P, is the orthogonal projection to

S+
Using matrix blocks, for any operator A € L(S), we identify

A 0 e 0
T = and ? =
0 0 0 1

Remark VIII.9. There is a direct sum decomposition of HSh = 7 @ 7 where

S

operatorsin J € 7 are such that P, JP, =0. A straightforward computation using
the matrix-block representation shows that tr(ab) =0 for any a € 7,b € 7, which
says 7 L= 7q.

So the manifolds exp(7) and ¢ =exp(7 ) are orthogonal at 1, the unique inter-

section point.

Theorem VIII.10. (projection to positive invertible n x n matrices) : Set
P ~ M C Iy with the above identification. Then for any positive invertible
operator e® € L1, (b€ HSh) there 1s a unique factorization of the form

=5 1) e (s V) (T )]

where e® = eAP + Qs € ? M, (a€T), X* =X acts on the subspace S+
and Y € L(S,S1).
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An equivalent expression for the factorization is

eb_ eA/Z 0 o Onsn e—A/ZY* eA/Z 0
Lo 1) TP U verz x 0 1

Yet another form is the following: for any p € X exist unique V € HS" such that
P, VP, =0, and unique q € X7 such that P, qQ, =Q, qP; =0and Q,qQs =Qq

which make the following equation valid

p=qe’q

Proof. From previous theorems and the observations we made, we know that

b N2 0 e A2 0 Vii V3, e A2 0 N2 0
€ = €X
0 1 P\ o 1 Vo1 Vs 0 1 0 1

for some A € L(S) and some V € HS™. That V;; = 0 follows from the fact (see
Remark VIIL.9) that 7+ =7, and V € Tea?® iff tr(e *Be AV;7) =0 for any
B € 7. This says that V has the desired form. ]

Remark VIIIL.11. Since V is orthogonal to # at any point, in particular it is
orthogonal to 2 at 1; so 1 is the foot of the perpendicular from e to #, or, in
other words, 1 is the point in # closest to e¥; the distance between 1 and eV is
exactly ||V|],.

In the notation of Theorem VIII.10, e* =1 if and only if A =0, if and only if
V = b, and we conclude that for any b € HS™ such that P,bP, =0, the point in
2 closest to e is 1. This is nothing but Remark VIIL.9 in disguise.

Remark VIIL.12. For any b € HS™, it holds true that the operator

A
a__ A . € 0 o A 0
e" =e Psn—i_PSi_(O 1)—exp(o 0>

is the 'first block’ n x n matrix which is closest to €® in L, and with a slight

abuse of notation for the traces of L(S,) and L(S;;), we have

@) Y*
dist(2,e®) = dist(e®,e?) = e
Y X

= \/IYe 2722 +|IX)2

€
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IX BEMBEDDING SYMMETRIC SPACES
OF THE NONCOMPACT TYPE

IX.1 A classical result

In a series of notes devoted to the geometry of manifolds of nonpositive sectional
curvature (in particular, [Eb85]), Patrick Eberlein puts together a result which

'"does not seem to be stated in the literature in precisely this form’ (szc).

Eberlein shows that every symmetric (real, finite dimensional) manifold M of
noncompact type can be realized isometrically as a complete, totally geodesic
sumanifold of M}l (R), where n = dim(M), with the precaution that one multi-

plies the metric on each irreducible de Rham factor of M by a suitable constant.

If Io(M) denotes the connected component of the isometry group of M that
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contains the identity, then G = I5(M) is a Lie group when given the compact-
open topology; if g is the Lie algebra of G, the idea of this result is based in
the representation of M into End(g). In the following paragraphs we outline the

main tools an ennunciate the result.

We state the de Rham decomposition theorem; for a proof see Theorem 6.11 of
Chapter I1I in [SakT96]

Theorem IX.1. Let M be a complete simply connected Riemannian mani-
fold. Then M 1s isometric to the Riemannian direct product Mg x My X --- X
My, where My 1s Euclidean space and the other M; are complete simply
connected 1rreducible Riemannian manaifolds. Moreover, this decomposition

18 unique up to order.

Let (M, (, )nq) be a symmetric space of noncompact type (z.e. simply connected,
with no Euclidean de Rham factor and nonpositive sectional curvature). For

these manifolds, G = Ip(M) is a semisimple Lie group (see [Eb85]).

Fix a point p € M. Since M is symmetric, the geodesic symmetry s,, generates an
involutive automorphism o}, of Io(M), where o}, (g) =spogosy,. The differential
of this map gives an involutive Lie algebra automorphism (see section V of this
manuscript, [Eb85], or [Hel62]) @, = d,0p : g — g; this map is characterized by

the equation
Op <etx> —etOp(X) forall XegandallteR

and gives a canonical decomposition of g where m identifies with the tangent
space T,M and ¢ = Fix(0,).
Let’s denote with B: g x g — R the Killing form of G, which maps

(X,Y) — trace(adXoady)

We define an inner product on g using the Killing form:
(X,Y)g =—B[Op(X),Y] = —trace(adOy(X) cady)

Now we ennunciate a few facts that we prove only partially, because they can
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be deduced from the general theory of representations (see, for instance, section
6.2, Chapter IV of [SakT96]), or can be found in Eberlein’s paper [Eb85]. See

also section V.2 of this manuscript.

The fact that G is semisimple ensures that B is nondegenerate.

By definition, Adg is the differential at Id € G of the g-inner automorphism

1

®g, that is, the map which sends ¢ — gdpg™'; since this map fixes Id, its

differential is an endomorphism of g.

G acts transitively on M, by means of the symmetries s}, ,, where pq 1is the

middle point of the minimal geodesic joining p to q.

This inner product makes m 1 ¢, adX is symmetric relative to this inner

product for any X € m, and adX is skew-symmetric for any X € £.

Recall that adX(Z) =[X,Z]. Then adX = i _ «(e'X) and also Adex =

eadX_

tr(adX) =0 for any X € g. This is due to the following:
1. We can span g with a basis {Ei}, such that ©,(Ei) = €;Ei, € =41 and
B[Ei,Ej] = €16ij , SO <Ei>Ej>g = 61"]'

2. (adX(Eq),Ei), = —BladX(Ei),Op(Ei)] = —€iB[adX(Ei), Ei]

=1 g

4. BladZ(X),Y] =—B[X,adZ(Y)] (this can be deduced using the Jacobi identity
twice)

=

3. tr(adX) = 3 (adX(Eq),Eq). = — 5 e:BladX(E;),E]
i 1i=1

Adg C GL(g), in fact Adg C SL(g). This a consecuence of:

1. The image of the exponential map e:g — G generates G; in other words

G=Ue(g)"

n

2. det(e™) =e'™ for any linear operator A

3. The two previous observations
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If we denote with a dagger the adjoint whith respect to the inner product
introduced above, then AdTG C SL(g) also.

The inner product (-,-)  is invariant under Adg, that is

g
(AdikX,AdyY), =(X,Y), for any k€K

(K is the isotropy group of p).

If g € M is such that g =g1(p) =g2(p) (gi € G) then calling u= 91_192,
u is in the isotropy group K of p, and using that the inner product is

Adg-invariant, we get

t _ t
Adl Adg, = Ad]j,Adg,

Moreover, Ad: G — SL(g) is injective. This is a consecuence of the fact
that M has no Euclidean de Rham factor (see [Wolf64]).

Theorem IX.2. Fiz a point p wn any symmetric (real, finite dimensional)

manifold M of noncompact type. Then the map F, : M — GL"(g) given by

q=9g(p) — AdgAd,

is a diffeomorphism with a closed, totally geodesic submanifold of GL™ (g)

Moreover, if we pull back the inner product on GL*(g) to M, this inner

product differs only by a constant positive factor from the inner product of
M, on each irreducible de Rham factor of M.

Proof. That AdgAdg is positive and invertible in End(g), and the map is well

defined is a consequence of the previous observations.

The proof of the theorem can be found in Eberlein’s survey, Proposition 19 of

[Eb85]. O
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IX.2 A new result

Now fix an orthonormal basis {Xj,---,Xn} of g and identify X; with e; in R™.
Then we obtain an embedding 7, : M — L, which is the composition of the pre-
vious map, the identification of GL(g) with GL(n,R), and the isometric, closed
and geodesically convex embedding of M} (R) in L, (see section VIIL.2 of this
manuscript and also section 4 of [AV03] by Andruchow et al.).

In this way, we can identify M with a subset of the first n x n block in the matrix
representation of ¥, ; in the notation of section VIII.2, M can be identified with
a closed and geodesically convex submanifold of #; remember that operators in

P have a matrix representation of the form

e 0

0 1
Theorem IX.3. For any (finite dimensional, real) symmetric manifold M
of the noncompact type (that is, with no Fuclidean de Rham factor, simply
connected and with nonpositive sectional curvature), there is an embedding
Fm M — X which 1s a diffeomorphism betwen M and a closed, geodes-
1cally convex submanifold of L. This map preserves the metric tensor in
the following sense: if we pull back the inner product on X, to M, then

this inner product s a (positive) constant multiple of the inner product of
M (on each wrreducible de Rham factor of M ). Moreover, Fam (M) C L;.

This theorem together with the general factorization theorem says that, for any
finite dimensional symmetric manifold M of the noncompact type, we can project
operators in Y, using the contraction Iy (assuming we identify M with its
image Fam (M)).
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X UNITARY ORBITS

There is a distinguished leaf in the foliation we defined in Section VIII, namely
Y1, which contains the identity. Moreover, X = exp(HS"). We will focus on
this submanifold since the nontrivial part of the geometry of X, is, by Theorem
VIII.6 contained in the leaves. We won’t have to deal with the scalar part of

tangent vectors, and some computations will be less involved.

X.1 The action of the unitary groups U (#¢) and « (L(H))

We are interested in the orbit of an element 1+ a € £; under the action of some

group of unitary operators.

We first consider the group of unitaries of the complex Banach algebra of 'uni-
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tized’ Hilbert-Schmidt operators. To be precise, let’s call

U(He)={g=A+a:acHS,AeC,g" =g '}

It is apparent from the definition that |A|=1 (so we can write A =e'?), and

also that a must be a normal operator; this definition can be restated (naming

g=a+A=u+iv+e'®) in the form of the following operator equation:
(w+cos(0))? + (v+sin(0))% =1

It will be apparent from the definition of the action that we will be always able
to choose 8 =0, so g = 1+ x with x a normal operator and o(x) C S’ —1 (here

—1 denotes translation in the complex plane).

The Lie algebra of this Lie group consists of the operators of the form i(x+1r1)
where x is a Hilbert-Schmidt, selfadjoint operator, and r is a real number, that
is

Ti(u(#He)) =iHgr ={a+A: a*=—aand A€ iR}

Since these are the antihermitian operators of the unitized Hilbert-Schmidt alge-
bra, we have Ty (U (H¢)) = }[Cah. But we mentioned early that it will be enough
to consider unitaries A+x with A = 1; in this case, with a slight abuse of notation,

we have an identification
Ty (u(#He)) =iHS™

Remark X.1. The problem of determining whether a set in £; can be given
the structure of submanifold (or not) can be translated into the tangent space

by taking logarithms; to be precise, note that
exp(uau®) = ue“u”

for any a € HS" and any unitary operator u, and that this map is an analytic
isomorphism between X and its tangent space. We will state the problem in

this context.

We fix an element a in the tangent space (that is, a € HSh) and make the unitary
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group act via the map
Tlq s U (#Hc) — HSP g gag”

Definition X.2. Let Sq :={gag* : g € u(#Hc)} be the orbit of a selfadjoint
Hilbert-Schmadt operator.

When is the orbit S, of a selfadjoint Hilbert-Schmidt operator a submani-
fold of HS"?

The answer to this question can be partially answered in terms of the spectrum:

Theorem X.3. If the algebra C*(a) generated by a and 1 s finite dimen-
sional, then the orbit Sq C HS™ can be given an analytic submanifold struc-

ture.

Proof. We give the tools for constructing the proof, and refer the reader to
[AS89] and [AS91]. A local section for the map 74 is a pair (Ug,@q) where U,
is an open neighbourhood of a in HS™ and ¢ is an analytic map from Ug to

U, such that:

Pala) =1

@ restricted to Uy NSy is a section for 7y, that is
Ta© Qalugns, =1dugns,

A section for m, provides us with sufficient conditions to give the orbit the
structure of immerse submanifold of HS™ (see Propostion 2.1 of [AS89]). The
section @, can be constructed by means of the finite rank projections in the
matrix algebra where C*(a) is represented. The finite dimension of the algebra
is key to the continuity (and furthermore analyticity) of all the maps involved. To
fix some notation, as in Theorem 1.3 of [AS91], suppose n = Z?:] ny =dimC*(a)

and T is the *-isomorphism

T:C*(a) = My, (C)&Mn, (C)&- - &My, (C)
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Consider the set of systems of projections (here piz =pi =Pp;,pipj; =0 for any
i 4):

m

Prn={(p1, - pn) €HF: ) pi=1}

i=1
Denote e}k € My, (C) the elementary matrix with 1 in the (j, k)-entry and zero
elsewhere, but embedded in the direct sum; take p}k(X) the polynomial which
makes e}k = p}k(’t(a)), and consider the following element in HS": e}k = p}k(a)
There is a neighbourhood U, of a in HSM such that 1— [ei” —p'h (x)]2 has
strictly positive spectrum, because v(x) = ||x|| < ||x||, and # is a Banach algebra

(here r(x) denotes spectral radius). The map

P Ny ]

Palx)=) > pi(¥E]; {1—<E%1—p%1(><))2}_2 i?

i=1j=1

is a cross section for 7y, and it is analytic from U, C HS" — U, since the
p]?k are multilinear and all the operations are taken inside the Banach algebra
He (the computation that proves that @, is in fact a cross section for 7, is
straightforward and can be found in the article by Andruchow et al., [AFHS90]).

O

Remark X.4. At first sight, it is not obvious if this strong restriction (on the
spectrum of a) is necessary for S, to be a submanifold of HS™. The main
difference with the work done so far by Deckard and Fialkow in [DF79], Raeburn
in [Rae77|, and Andruchow et al. in [AS89], [AS91] is that the Hilbert-Schmidt
operators (with any norm equivalent to the | - ||,-norm) are not a C*-algebra. A
remarkable byproduct of Voiculescu’s theorem [Voic76] says that, for the unitary
orbit of an operator a with the action of the full group of unitaries of L(H), it is
indeed necessary that a has finite spectrum. For the time being, we don’t know
if this is true for the algebra 8 = #¢.

Let’s examine what happens when we act with the full group ¢ (L(H)) by means

of the same action. For convenience let’s fix the notation
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Sq={uau® : ue u(L(H))}

We will develop an example that shows that the two orbits (S, and &4) are,
in general, not equal when the spectrum of a is infinite. Since a is compact
and selfadjoint, we can assume that a is a diagonal operator; that is, there’s an

orthonormal basis {ey} of H such that

a= Zock ex ey, where Z | o 2= tr(a*a) < 400
Kk k

Example X.5. Take H=1,(Z), S € L(H) the right shift (Sex =eyx1). Then S

is a unitary operator with S*ey =eyx_1. Pick any a of the form

a:Zrkek@@ek and Z!rk!2<+oo
KeZ k

where all the ry are different. (For instance, 1 = would do). Obviously,

1
k|41
a € HS™. We affirm that there is no Hilbert-Schmidt unitary such that SaS* =

waw*

Proof. To prove this, suppose that there is an w € 1, such that SaS* =waw".
From this equation we deduce that S*w commutes with a, and given the partic-

ular a and the fact that S*w is unitary, we have

S*w:Zwk ex ey with | wy =1
KEZ

because C*(a) is maximal abelian. Multiplying by S we get to

W:Z(Uk (Sek)®ek:Zwk ex1®ex
keZ keZ

or, in other terms, weyx = wyex1. Since w is a compact perturbation of a scalar

operator, w must have a nonzero eigenvector x, with eigenvalue o = e'® (since
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w is also unitary); comparing coefficients the equation ax =wx reads

XXk = Wk_1Xk_1, Where x = Zxkek
k
This is impossible because x € 1;(Z), but the previous equation leads to | xy [=[%; |
for any k,j € Z. [

As we see from the previous example, the two orbits do not coincide in general.

For the action of the full group of unitaries we have the following:

Theorem X.6. The set G, C HS" (the orbit of the Hilbert-Schmidt operator
a under the action of u(L(H)), the full unitary group) can be given an
analytic submanifold structure if and only if the C*-algebra generated by a

and 1 1s fimite dimensional.

Proof. The ’only if’ part goes in the same lines of the proof of the previous
theorem but being careful about the topologies involved, since now we must
take an open set U, C HS™ such that the map ¢ : Uq — @ (L(H)) is analytic.
But this can be done since the polynomials p}k are now taken from Ug to L(H)™,
and the maps + and - are analytic since ||x.y|| (1) <[], [[yll,-

The relevant part of this theorem is the 'if’ part. Suppose we can prove that the
orbit G4 is closed in L(H). Then Voiculescu’s theorem (see [Voic76|, Proposition
2.4) would tell us that C*(a) is finite dimensional. This is a deep result about
x—representations, and the argument works in the context of L(H), but not in
#Hc because the latter is not a C*-algebra.

To prove that & is closed in L(H), we first prove that it is closed in #¢. To
do this, observe that if G4 is an analytic submanifold of HS™, then &, must
be locally closed in the ||-||, norm. Since the action of the full unitary group is
isometric, the neighbourhood can be chosen uniformly, that is, there is an € >0
such that for all ¢ € G, the set Ne ={d € G4 :|c—d|, < €} is closed in HS™
(with the 2-norm, of course). This is another way of saying that G is closed in
HS"™.

Now suppose an =unauj, =y in L(H). We claim that |an, —yl|, — 0, which

follows from a dominated convergence theorem for trace class operators (see
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[Simon8&9], Theorem 2.17). The theorem states that whenever ||an —Yyljoo — O
and pi(an) < pux(a) for some a € HS, and all k (here pi(x) denotes the non zero
eigenvalues of | x [), then |jan —y|, — 0.

Observe that | an |[=un | a|uj, so we have in fact equality of eigenvalues. This
proves that S is closed in L(H) since it is closed in HS™. O

We proved that, when the spectrum of a is finite, S and &4 are submanifolds
of £1. But more can be said: S, and & are the same subset of HS" (compare
with Example X.5):

Lemma X.7. If a € HS" has finite spectrum, then the orbit under both

unttary groups are the same submanafold.

Proof. The main idea behind the proof is the fact that, when o(a) is finite, a
and gag* act on a finite dimensional subspace of H (for any g € ¢ (L(H))). To
be more precise, let’s call S = Ran(a), V =Ran(b), where b = gag*. Note that
V =¢(S) so S and V are isomorphic, finite dimensional subspaces of H. Naming
T =S+V this is another finite dimensional subspace of H, and clearly a and b
act on T, since they are both selfadjoint operators. For the same reason, there
exist unitary operators P,Q € L(T) and diagonal operators Dy,Dy € L(T) such
that
a=PD4.P*, b=QDypQ"

But o(b) = o(gag*) = o(a), so Dq =Dy :=D. This proves that b = QP*aPQ*
(the equality should be interpreted in T). Now take Pt the orthogonal projector
in L(H) with rank T, and set u =1+ (QP* —17)P1 (note the slight abuse of
notation). Then clearly u € 4 (#¢) and uau* =b. O

X.2 Riemannian structures for the orbit Q

Suppose that there is, in fact, a submanifold structure for G, (resp. Sq). Then

the tangent map ( = dymy) has image

[va—av:ve sy
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where B stands for L(H) (resp. #). So, in this case
TaSal or TaGq) ={va—av:ve 3"}

We can go back to the manifold Y1 via the usual exponential of operators; we
will use the notation
Q=e% or Q=¢€%¢

without further distinction, since the meaning will be clear from the context.
Note that QO ={ue“u” : ue u(8)} C X1 and we can identify

TeaQ ={ve®—e%:ve 3 M ={i(he®—e%h):he 3"}
Remark X.8. For any p € Q, we have
T, Q={vwp—pv:ive 3™ and TpQL —{x e HS": [x,p] =0}

These two identifications follow from the definition of the action, and the equality

(x,vp—pv), =4tr|(p~'x—xp )V

The submanifold Q is connected: the curves indexed by w € 32h,

Y (t) — etweae—tw

join e¢ to ue®u”, assuming that u=-e".

We can ask whether the curves v,, will be the familiar geodesics of the ambient
space (equation (3) of section II). Of course they are trivial geodesics if a and w

commute. We will prove that this is the only case, for any a:

Proposition X.9. For any a € HS", the curve v, is a geodesic of L, if and

only if w commutes with a. In this case the curve reduces to the point e®.

Proof. The (ambient) covariant derivative for v,, (equations (II.5) and (2) of

section II) simplifies up to we*we™¢

=e%we™ “w or, writing w =1ih (h is self-
adjoint)

he®he™ * =e%he “h (16)
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X.2. Riemannian structures for the orbit Q

Consider the Hilbert space (H,(, ),) with inner product

<X)y>a = <e—a/2X)e—a/2y> )

where (, ) is the inner product of H. The norm of an operator x is given by

IXlla= sup [xzlla= sup e/ ?xz]|o0 = [le™/ Pxe®?||us
z]la=1 le=a/2z||=1
because e~ %/? is an isomorphism of H. This equation also shows that the Banach

algebras (L(H),|| - [|[co) @and 8 = (L(H),|| - ||a) are topologically isomorphic and, as
a byproduct, 04 (h) C R. From the very definition it also follows easily that 3
is indeed a C*-algebra.

A similar computation shows that X*% =e®X*e~¢. Note that e® is B-selfadjoint,

moreover, it is B-positive. We can restate equation (16) as
hh*® =h*?h

This equations says that h is B-normal, so a theorem of Weyl and von Neumann
(see [Dav96]) says it can be aproximated by diagonalizable operators with the
same spectrum; since h has real spectrum, h turns out to be 8-selfadjoint . That
h is B-selfadjoint reads, by definition, e*he™ * = h*? = h; this proves that a and

h (and also a and w) commute. O

x.2.1 The orbit Q as a Riemannian submanifold of HSh

We've shown earlier that the orbit of an element a € HS™ has a structure of
analytic submanifold of HS™ (which is a flat Riemannian manifold) if and only
if QO =e® has a structure of analytic submanifold of X .

Since the inclusion Q ¢ HS" is an analytic embedding, we can ask whether the

Ccurves

Yo (t) — etweae—tw

will be geodesics of Q as a Riemannian submanifold of HS™ (with the induced

metric).
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For this, we notice that the geodesic equation reads ¥, (t) L T, )Q, and we
use the elementary identities v = wy —yw, ¥ = w2y —2wyw +yw?; we get to
the following necessary and sufficient condition using the caracterization of the
normal space at y(t) of the previous section:

wzyz —2wywy + 2ywyw — yzwz =0

—wt,, 1 wt _

But observing that e Yo e eia, this equation transforms in the operator

condition

w?e?® —2we%we® + 2ewew —e?w? =0 (17)

Let’s fix some notation: set €® =1+ A with A € HS"; then the tangent space at

e can be thought of as the subspace
TeaQ ={i(Ah—hA):he 8™} c HSM
and its orthogonal complement in HS™ is (see Remark X.8)
Tea QT ={x e 3":[x,A] =0}

It should be noted that both subspaces are closed by hypothesis. Then equation
(17) can be restated as

h?A% —2hAhA +2AhAh—A2%h? =0 (18)
where h is the hermitian generating the curve

'Y(t) —1 +eithAe—ith — eitheae—ith

Let’s consider the case when A2 = A:

Remark X.10. If A2 =A, A must be a finite rank orthogonal projector (since
A =e%—1 and a is a Hilbert-Schmidt operator). Hence, o(a) must be a finite
set, and in this case (Lemma X.7) the orbit with the full unitary group and the
orbit with the Hilbert-Schmidt unitary group are the same set.

To solve the problem of the geodesics completely, we review the work of Corach,
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Porta and Recht ([PR96] or, more specifically [CPR93a]); we follow the idea of
section 4 of that article and put the result in context.
Observe that when A is a projector, we have a matrix decomposition of the

tangent space of X1, namely HS™ = Ay @ A, where

= {3 o)) = a8

In this decomposition, x17 = AhA |, x22 = (1 —A)h(1—A) are selfadjoint opera-

tors (since h is) and also xj, =%27 = (1 —A)hA for the same reason.

Theorem X.11. Whenever A =e® —1 1s a projector, any curve of the form
,Y(t) — eithea e*"L

Hsh

th with h selfadjoint and codiagonal is a geodesic of Q C

Proof. Note that Ay = TeaQ", and A = TeaQ; note also that equation (18)
translates in this context to xj1Xx712 = x712%22, a condition which is obviously
fullfilled by h € A;. O

Remark X.12. Equation (18) translates exactly in ’hy commutes with h;’ when-
ever h =hg +hy € HS", and we have

[Ao, A1l CA1 [Ap,A0l CAp [A1,A1] C Ay

Since the orbit under both unitary groups coincide (Remark X.10), assume that
we are acting with G = @ (8); since the tangent space at the identity of this
group can be identified with 8", the above commutator relationships say that
iAg @iAq is a Cartan decomposition of the Lie algebra g = 3", It is apparent
that 1A is the vertical space, and 1A is the horizontal space (see section IX).

Moreover,
Ao-Apg CAp A1-A1 CAp Ap-A1 CAq A1-Ap CAq

Corollary X.13. Ife*—1 s an orthogonal projector, there 1s no point p € Q
such that Q) 1s geodesic at p.
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X.2.2 The orbit () as a Riemannian submanifold of %,

In this section we give () the induced Riemannian metric as a submanifold of

21, and discuss shortly the form of the geodesics and the sectional curvature.

Recall that covariant derivative in the ambient space is given by
Oyv=%—vy v
and the orthogonal space to p € QO are the operators commuting with p, so
Oyv L T,Q if and only if
VY =vV+yvy v —vy vy =0 (19)

This is an odd equation; we know that any curve in Q starting at p =e® must

be of the form y(t) = g(t)e*g(t)* for some curve of unitary operators g.
For the particular curves y(t) =elthe®eHh h(t) =ith, so h(t) =ih, and h(t) =

0; equation (19) reduces to the operator equation
he%he  “+he “he® =e “he“h+e%he” “h (20)

or X* =X, where X =he%he™ ¢+ he “he“.

Recall that, when the spectrum of e® is finite, the unitary groups @ (L(H)) and
U (Hc) induce the same manifold Q C X;.

Theorem X.14. Assume e =1+ A with A an orthogonal projector, and
Q C Xy 1s the unitary orbit of €. Then (throughout [ , | stands for the

usual commutator of operators)
(1) Q s a Riemannian submanifold of X;.
(2) T,Q ={ilx,p] :x € HS"} and T,Q' ={x € HS" : [x,p] = 0}.
(8) The action of the unitary group s isometric, namely
dist? (upu*,uqu*) = dist** (p, q)

for any unitary operator u e L(H).
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(4) For any v =i[x,p] € T,Q, the exponential map is given by
EXp](D). (V) — eighg*p e—ighg*

where p = ge®g* and h s the codiagonal part of g*xg (in the matrix
representation of Proposition X.11). In particular, the exponential

map 1s defined in the whole tangent space.

(5) If p=ge®g*, q=we*W*, and h is a selfadjoint, codiagonal operator

such that w*ge'h commutes with e®, then the curve

,Y(t) _ eitghg*pe—itghg*

18 a geodesic of O C Ly, which joins p to q.
(6) If we assume that h € HS™, then L(y) = 4 |Ihl,
(7) The exponential map Expg : T — QO s surjective.

Proof. Statements (1) and (2) are a consequence of Remark X.10 and Theorems
X.3 and X.6. Statement (3) is obvious because the action of the unitary group is
isometric for the 2-norm (see Lemma I1.6). To prove statement (4), take x € HS",
and set

v =ilx,p] =i(xgAg" —gAg*x) = iglg"xg,e"lg"
Observe that

e t=(14A)" :1—%}\

Rewriting equation (20), we obtain
h?A —Ah?+2AhAh—2hAhA =0

Now if y = g*xg, take h = the codiagonal part of y; clearly hA —Ah=yA — Ay,
S0

i (t) — eitheae—ith
is a geodesic of Q) starting at r =e® with initial speed w =i[y,e?] = g*vg (see

Proposition X.11). Now consider Yy = gy1g*. Clearly vy is a geodesic of Q starting
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at p = ge®g* with initial speed v. To prove (5), note that

. . . " . « . . s X
1hteae iht *:eltghg a *x.itghg :eltghg itghg

Y(t) =ge g ge“g'e pe

which shows that ’Y(O) =Pp and ’y(]) =( because w*geihea — eaw*geih. To

prove (6), we can assume that p =e%, and then
L(y)? = [[h,pl||3 = [[[h,e%]||éa =4-tr(2he®he * —2h?)

Now write h as a matrix operator [0,Y*Y,0] € A; (see Proposition X.11), to

obtain
tr(2he®he @ —2h?) = tr(Y*Y) = L tr(h?),

hence L(y)? =2tr(h?) = %Hh”i as stated. The assertion in (7) can be deduced
from folk results (see [Br93]) because q = we®w* and p = ge“g* are finite rank

projectors acting on a finite dimensional space (see the proof of Lemma X.7). [
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Remark XI.1. Theorem X.3 doesn't answer whether is it necessary that the
spectrum of a should be finite for the orbit to be a submanifold, when we act
with « (#c) (see Remark X.4). The problem can be stated in a very simple

form:

Choose any involutive Banach algebra with identity 8, take a = a* € 3.
Name S, the image of the map 7 : U (B) — B which assigns u— uau*

Is the condition "a has finite spectrum" necessary for the set Sq C 8 to be
closed?

Remark XI.2. The standard representation of L(H) (acting on the Hilbert-
Schmidt operators by left or right product) induces a morphism of the latter
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operators into the state space of L(H). Hyperbolic geometry of states seems to

be possible in this context.

Remark XI.3. It should be interesting to find an applicaction of the factoriza-
tion theorem in the theory of integral equations. Such a nonlinear factorization

should take the following form: if k is the symmetric kernel of the equation

(Kf)(t) :Lk(s,t)f(s)ds

(namely f — Kf is a selfadjoint operator of L%(I)), then find A > 0 such that K
is a positive invertible operator and find a convenient LTS to project to (for

instance: diagonal operators) then write
K=Dexp(Y)D—A

with D? the diagonal invertible operator closest to K+ A in the geodesic distance,

and Y a codiagonal operator. The equation should take the form

(Kf)(t) = L L L d(v,t)j(u,v)d(s,u)f(s)dsdudv —Af(t)

If Y is small, the original equation could be replaced by

(Df)(t) = JI d(s,t)f(s)ds —Af(t)

with an error term that can be bounded using the inequalities of section III.

Remark XI.4. In several recent papers (the latest at the moment we write these
lines is [CGM]), R. Cirelli, M. Gatti and A. Mania propose a delinearization
program for quantum mechanics based in identifying the pure state space with a
convenient homogeneous manifold (the infinite projective space). The manifold

Y seems to be another convenient setting for a delinearization program.
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Remark XI.5. Assume 4 is a von Neumann algebra with a faithful trace 1 (for
instance, the reduced group algebra of a unimodular locally compact group), and
4y, for stands for the selfadjoint elements of 4. If we use GL(4) to denote the
group of invertible elements of 4, and 4" to denote the set of positive invertible
elements, then a construction similar to the one we made for Hilbert-Schmidt
operators can be made in order to construct a nonpositively curved manifold
Y := 4" with an invariant metric (under the action of the group GL(4) with
action g — gpg"), setting

1

(x,4), :==T(y™x) and (x,y>p =1(y*p~ xp_1 )

The tangent space at any point p € £ can be naturally identified with 4;,. All
the results concerning curvature, convexity of the geodesic distance, minimality
of the geodesics, geodesic triangles, and algebraic characterization of convex
submanifolds of sections III, and V of this manuscript hold true with proofs that
can be translated almost verbatim.

One technical obstacle that should be remarked is the following: with this in-
ner product given by a faithfull trace, the induced pre-Hilbert space that we
construct in 4y, is not complete. This is an obstacle for the construction of
the projections, but it can be saved with a refinement [PR94| of the argument
we used in section VI, when we proved that the set of points in X that can be
projected to a convex submanifold is open and closed in the norm topology.
The natural subsets where one would be able to project are the hermitian part
of subalgebras of 4. By a result of Takesaki [Tak72], for any subalgebra 4 of 4
there is a conditional expectation E: 2 — # compatible with the trace, namely
T(E(x)y) =71(xy) for any y € # and any x € 4. In this way the kernel of the
conditional expectation acts as an ’orthogonal complement’ of 4}, (with respect

to the trace inner product): M}f is a closed involutive subspace of 4y,.
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